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PrefAce

The Kansas Department of Transportation’s (KDOT) Kansas Transportation 
Research and New-Developments (K-TRAN) Research Program funded this 
research project. It is an ongoing, cooperative and comprehensive research 
program addressing transportation needs of the state of Kansas utilizing 
academic and research resources from KDOT, Kansas State University and 
the University of Kansas. Transportation professionals in KDOT and the 
universities jointly develop the projects included in the research program.

nOtice

The authors and the state of Kansas do not endorse products or manufacturers. 
Trade and manufacturers’ names appear herein solely because they are 
considered essential to the object of this report. 

This information is available in alternative accessible formats. To obtain an 
alternative format, contact the Office of Transportation Information, Kansas 
Department of Transportation, 700 Sw harrison, Topeka, Kansas 66603-
3745 or phone (785) 296-3585 (voice) (TDD).

DiscLAiMer

The contents of this report reflect the views of the authors who are responsible 
for the facts and accuracy of the data presented herein. The contents do not 
necessarily reflect the views or the policies of the state of Kansas. This report 
does not constitute a standard, specification or regulation.
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ABSTRACT 

Traffic crashes results from the interaction of different parameters which includes 

highway geometrics, traffic characteristics and human factors. Geometric variables 

include number of lanes, lane width, median width, shoulder width, roadway section 

length, and shoulder width while traffic characteristics include AADT, Percentage of 

Heavy Vehicles and Speed. The effect of these parameters can be correlated by crash 

prediction models that predict crash rates at particular roadway section. 

Transportation Agencies and State Departments of Transportation are 

continuously faced with decisions concerning the safety of highways. The evaluation 

and comparison of alternative long-range highway plans should include the safety 

implications of respective plans. The commonly available models for safety analysis are 

crash prediction models. By performing an in-depth analysis of crash databases and 

developing crash rate prediction models, better decisions can be taken in regard to 

future traffic planning operations.  

The main objective of this study is to utilize artificial neural network techniques 

and develop crash rate prediction models for Kansas road networks. Six networks have 

been studied and crash prediction models for each network have been developed. Four 

crash rate categories have been considered in this study. They are: 

• Total Crash Rate (TCR) [Injury + Fatal + Property Damage Only] 

• Injury Crash Rate (ICR) [Disabling Injury + Possible Injury + Non-

Incapacitating Injury] 

• Severe Injury Crash Rate (SICR) [Disabling + Fatal] 

• Fatal Crash Rate (FCR) [Fatal] 
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The models developed for each of the road networks are unique and show that 

geometric variables and traffic have a significant impact on the crash behavior. The 

models developed in this study would be utilized by Kansas Department of 

Transportation in evaluating roadway design features, reconstruction impacts and to 

make decisions in regard to future traffic planning operations. Sensitivity analysis was 

performed on all the geometric variables in the models. It has been found that all the 

continuous variables have different effects on different networks. It is very difficult to 

generalize the behavior of a particular variable. Same results were observed for 

categorical variables, too.  

Vehicle Type, Driver age and seat belt use by drivers have also been studied and 

it has been found that Driver Age Group (18-20) has the highest involvement in crashes 

on all road networks. Passenger cars have the highest crash involvement among 

vehicle types and among all vehicle types; bus drivers have the highest seat belt 

compliance for all networks.  

This research serves as a starting point to demonstrate the use of artificial neural 

networks to develop crash rate prediction models that could present useful insight to the 

potential corresponding safety and traffic operation performance.  
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CHAPTER 1 - INTRODUCTION AND OBJECTIVES 

1.1 Introduction 

Transportation safety is a very important issue in United States (U.S) because 

about 94 percent of all transportation-related fatalities and injuries involve highway 

motor vehicle crashes (FHWA, 2001). According to National Highway Traffic Safety 

Association (NHTSA) there were an estimated 5,973,000 police-reported traffic crashes, 

in which 38,588 people were killed in highway crashes. Also highway crashes were the 

leading cause of deaths in U.S for ages 2 through 14 in the year 2006 (NHTSA, 2008). 

The highest price we pay for motor vehicle crashes is in the loss of human lives; 

however society also bears the brunt of the many costs associated with these crashes. 

The estimated cost of motor vehicle crashes in 2000 totaled $230.6 billion. It is equal to 

approximately $820 for every person living in the United States and 2.3% of the U.S. 

Gross Domestic Product (NHTSA, 2001). The fatality statistics on our highways (Table 

1.1) portray the extent of the problem and the immediate need for corrective action.  

Driving involves several complex interactions among drivers, vehicles and 

roadways. Crashes result when there is a conflict between at least two of these 

elements. Usually crashes are the result of bad decisions made by the driver in the 

driving environment designed by Traffic Engineers and Transportation Planners. So it is 

very important to have a thorough understanding of complex relationships in order to 

reduce the likelihood of conflicts among these elements. 

The Transportation Department for every state is continuously faced with 

decisions concerning the safety of highways. The evaluation and comparison of 
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alternative long-range highway plans for rural and urban areas should include the safety 

implications of respective plans. The commonly available models for safety analysis are 

crash prediction models. Crash prediction models are very important as they deal with 

quantifying the relationship between the crashes observed at a site and the existing 

traffic and geometric conditions. These prediction models can give us an idea of the 

important variables and the influence of each in causing crashes at a site.  

This research focuses on the large historical traffic crash database maintained by 

the Kansas Department of Transportation (KDOT), for the state of Kansas. The 

database has records since 1990. This existing crash database can help transportation 

engineers in evaluating the safety measures that they undertake. Crash records and 

their analysis are an essential element in any traffic safety program for several reasons: 

• They aid in locating high crash locations on the existing highway system 

• The crash experience provides an evaluation of design features 

• Efficient planning is based, in part, on traffic volumes and crash rates 

• The analysis of crash records may have a direct influence on the budgeting for 

improvements 

Currently, KDOT does not perform an in-depth analysis (i.e., mining) of their 

traffic-crash historical database. There is a lot of hidden information within this database 

and in order to efficiently study and extract the information, it is essential to use data 

mining techniques to mine this crash database. Such an in-depth analysis can be 

performed by mining the database using statistical and/or artificial neural network 

(S/ANN) approaches. The employed mining process usually yields new useful 

correlations between crashes and prevailing traffic and roadway characteristics. ANN’s 
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are one of the recently explored advanced technologies which show promise in the area 

of transportation engineering. However, in contrast to the availability of a large number 

of successful application demonstrations, it is hard to find studies in the literature that 

provide systematic examinations of the state-of-the-art, application domains, and the 

applicability of artificial neural networks in data mining traffic crash databases. Without 

such an in-depth mining process, these new correlations are most likely to stay hidden 

within the databases. Therefore, KDOT may never be able to capitalize on the richness 

of the available traffic-crash historical database in order to make better decisions in 

regard to future traffic planning operations. The extracted or discovered new 

correlations could aid KDOT in better understanding the interaction between crashes 

and prevailing traffic and roadway characteristics. Moreover, availability of such new 

correlations could aid KDOT in obtaining reliable estimates of anticipated number and/or 

type of crashes on specific highway system during the coming years.  

This information could serve as an early warning if estimates are higher than 

expected. Consequently, this may allow KDOT to take appropriate actions such as the 

implementation of various safety measures on specific highway sections in order to 

reduce the anticipated traffic-related crashes and thereby helping KDOT prepare for 

things before they actually happen. Since the crash database is huge, there are no 

clearly defined expectations about the kind of patterns that are lying hidden inside.  

1.2 Objectives 

Traffic crashes result from the interaction of different parameters which includes 

highway geometrics, traffic characteristics and human factors. Geometric variables 

include number of lanes, lane width, median width, shoulder width, roadway section 
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length, and shoulder width while traffic characteristics include AADT, Percentage of 

Heavy Vehicles and Speed. The effect of these parameters can be correlated by crash 

prediction models that predict crash rates at particular roadway section. There have 

been several studies conducted and modeling methodologies adopted in the past 

related to crash rates and most of the studies had drawbacks and problems with data. 

This research tries to avoid the drawbacks of earlier studies and utilizes the powerful 

capabilities of ANN’s to data mine the crash database and develop crash rate prediction 

models.  

The main objectives of this research are: 

1. Examine the relationships between the occurrence of crashes and related 

causal factors including traffic and geometric variables and developing crash 

rate prediction models using Artificial Neural Networks for Kansas road 

networks.  

2. Investigate the relationship between crash rates, driver age, vehicle type and 

seat belt use using data aggregation. 

Additionally, this research is the first in the nation to utilize the Artificial Neural 

Network (ANN) mining approach to extract new and reliable traffic-crash correlations 

from historical databases.  



 

5 
 

 

Fatality Rates on U.S Highways 

Year 
Fatal 

Crashes 
VMT 

(Billions) 
Fatalities/100 
Million VMT 

Fatalities/100,000 
Pop. 

Fatalities/100,000 
R.V. 

Fatalities/100,000 
L.D. 

2006 38588 3014 1.41 14.24 16.96 21.03 
2005 39252 2989 1.46 14.67 17.71 21.70 
2004 38253 2923 1.46 14.52 18.00 21.54 
2003 38477 2891 1.48 14.75 18.58 21.86 
2002 38491 2856 1.51 14.94 19.06 22.13 
2001 37862 2797 1.51 14.80 19.07 22.06 
2000 37526 2747 1.53 14.86 19.33 22.00 
1999 37140 2691 1.55 15.30 19.61 22.29 
1998 37107 2632 1.58 15.36 19.95 22.44 
1997 37324 2562 1.64 15.69 20.64 22.99 
1996 37494 2486 1.69 15.86 20.86 23.43 
1995 37241 2423 1.73 15.91 21.22 23.68 
1994 36254 2358 1.73 15.64 21.15 23.21 
VMT-Vehicle Miles Traveled, Pop.-Population , R.V.-Registered Vehicles, L.D-Licensed Drivers 

Table 1.1: Fatality Statistics - NHTSA 
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CHAPTER 2 - ARTIFICIAL NEURAL NETWORKS 

2.1 Introduction 

Artificial Neural Networks (ANN’s) are computational systems whose architecture 

and operation are inspired from our knowledge about biological neural cells (neurons) in 

the brain. ANN’s can be described either as mathematical and computational models for 

non-linear function approximation, data classification, clustering and non-parametric 

regression or as simulations of the behavior of collections of model biological neurons. 

These are not simulations of real neurons in the sense that they do not model exactly 

like the real neuron, but, model several aspects of the information combining and 

pattern recognition behavior of real neurons in a simple yet meaningful way. Neural 

network modeling has shown incredible capability for emulation, analysis, prediction, 

and association.  

ANN’s can be used in a variety of powerful ways to learn and reproduce rules or 

operations from given examples; to analyze and generalize from sample facts and make 

predictions from these; or to memorize characteristics and features of given data and to 

match or make associations from new data to the old data. ANN’s are able to solve 

difficult problems in a way that resembles human intelligence. The uniqueness of neural 

networks is their ability to learn by example. Traditional artificial intelligence (AI) 

solutions rely on symbolic processing of the data, an approach which requires a prior 

human knowledge about the problem. Also neural networks techniques have an 

advantage over statistical methods of data classification because they are distribution-

free and do not require a prior knowledge about the statistical distributions of the 

classes in the data sources in order to classify them.  
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2.2 ANN Architecture-General Features 

As ANN’s are models of biological neural structures, the starting point for any 

kind of neural network analysis is a model neuron whose behavior follows closely our 

understanding of how real neurons work. This model neuron is shown in Figure 2.2 

where the neuron (i) has m input vector (xm) and a single output (yi). Each input signal is 

weighted, that is, it is multiplied with the weight value (w) of the corresponding input line 

(by analogy to the synaptic strength of the connections of real neurons). The neuron will 

combine these weighted inputs by forming their sum and, with reference to a threshold 

value and activation function it determines its output. 

In mathematical terms, we may describe the neuron by writing Equation 2.1 and 

2.2, 

N

i i
i 1

u w x
=

= ∑  Equation 2.1 

y f(u )= − θ  Equation 2.2 

where 1 2 3 nx ,x ,x ,...x  are the inputs, 1 2 3 nw ,w ,w ,...w  are the synaptic weights, u is the 

activation potential of the neuron, θ  is the threshold, y  is the output signal of the 

neuron, and f(.)  is the activation function. For notational convenience, Equations 2.1 

and 2.2 may be reformulated into Equations 2.3 and 2.4 by setting 0w = θ  and 0x 1= − .  

N N

i i i i
i 1 i 1

w x w x
= =

− θ =∑ ∑  Equation 2.3 

N

i i
i 1

y f w x
=

⎛ ⎞
= − θ⎜ ⎟

⎝ ⎠
∑  Equation 2.4 
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The combination of a fixed input 0x 1= − and of an extra input weight 0w = θ  

accounts for what is known as a bias input. Note that the new notation has augmented 

any input vector Nx∈ℜ  to the vector 
N 1

( 1,x)
+∈ℜ−  and also the weight vector Nw∈ℜ of the 

neuron, to the vector
N 1

0(w ,w)
+∈ℜ . The activation function, denoted by f(.) , defines the 

output of the neuron in terms of the activity level at its input. The most common form of 

activation function used in the construction of ANN’s is the sigmoid function. An 

example of the sigmoid is the logistic function, defined by Equation 2.5, 

( au)
1f(u)

1 e −=
+

 Equation 2.5 

where a is the slope parameter of the sigmoid function. By varying the parameter, we 

can obtain sigmoid functions of different slopes. In the limit, as the slope parameter 

approaches infinity, the sigmoid function becomes simply a threshold function. The 

threshold function however, can take only the values 0 or 1, whereas a sigmoid function 

assumes a continuous range of values from 0 to 1. Also the sigmoid function is 

differentiable, whereas the threshold function is not. Differentiability is an important 

feature of neural network theory and has a fundamental role in the learning process in 

ANN’s.  

The artificial neural network model is generally referred to as a multi-layer 

perceptron (MLP). This architecture consists mainly of three types of neuron layers, 

namely input layer, hidden layer(s) and an output layer. The nodes in an input layer are 

called input neurons or nodes; they encode the data presented to the network for 

processing. These nodes do not process the information, but simply distribute the 

information to other nodes in the next layer. The nodes in the middle layers, not directly 
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visible from input or output, are called hidden nodes. These neurons provide the 

nonlinearities for the network and compute an internal representation of the data. The 

nodes in the output layer are referred to as output neurons: they encode possible 

desired values assigned to the input data. A typical multilayer perceptron neural network 

model is shown in Figure  2.3. 

Neural networks are classified according to structure and learning method 

employed. The architecture (structure) of neural network represents the connectivity 

between the various neurons in the structure. The learning methods vary in relation to 

the way weights of the interconnections are updated during learning process. As for 

structure, neural networks are chiefly divided into feedforward networks and recurrent 

networks  

2.3 The Training Technique 

In this study a unique training technique has been adopted. The selection of a 

good network structure is the initial and most essential stage. There are various issues 

related to network structure that should be predetermined (or pre-adjusted) prior to 

training including the initial values of connections weights, number of hidden layers, 

maximum number of iterations allowed, stopping criteria, and minimum and maximum 

number of hidden nodes in each hidden layer.  

The first step in training is to choose the algorithm to be used for training the 

desired ANN. The most commonly employed is the standard back-propagation 

algorithm which is the one adapted throughout this study. Before training, the 

connection weights are set to small random values as explained earlier, including the 

weights connecting the biases to the hidden and output layers. Then after each training 
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step, a new set of connections is determined. To assess the potential success of this 

set of connections after each epoch (iteration), some statistical accuracy measures 

such as the overall Coefficient of Determination Factor (or simply R2), Mean Average 

Relative Error (MARE), and the Averaged-Squared-Error (ASE) are evaluated. R2 factor 

can be calculated using Equation 2.6.  

j jJ
xy xy

j j
j 1 xx yy2R

J
=

σ ×σ
σ ×σ

=
∑

 Equation 2.6 

P P P
j j j j j
xy n n n n

n 1 n 1 n 1

1x y x . y
P= = =

σ = −∑ ∑ ∑  Equation 2.7 

P P P
j j j j j
xx n n n n

n 1 n 1 n 1

1x x x . x
P= = =

σ = −∑ ∑ ∑  Equation 2.8 

P P P
j j j j j
yy n n n n

n 1 n 1 n 1

1y y y . y
P= = =

σ = −∑ ∑ ∑  Equation 2.9 

Where, j
nx  refers to the value of the actual (desired) output j parameter for 

pattern number n, while j
ny  refers to the associated ANN prediction. P is the total 

number of provided patterns and J is the total number of output parameters. MARE can 

be calculated by Equation 2.10.  

j jJ P
n n

j
j 1 n 1 n

y x100MARE(%) .
PJ x= =

−
= ∑∑  Equation 2.10 

The resulting statistical accuracy measures can be used to assess the level of 

agreement between predicted and desirable output values. Therefore, they can be used 

to select the optimal (best performing) network by examines a plot of error versus the 

number of epochs (iterations). This plot, which is generally called the “learning curve”, is 
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used to illustrate the training-accuracy history for every trained network. ASE is 

calculated according to Equation 2.11. 

J P
j j 2

n n
j 1 n 1

ASE (y x )
= =

= −∑∑  Equation 2.11 

Figure 2.1: Artificial Neuron 

Figure 2.2: Artificial Neuron 

 



 

13 
 

 

 

Figure 2.3: Typical Multilayer Perceptron Model 
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CHAPTER 3 - LITERATURE REVIEW 

3.1 Introduction 

There have been several studies conducted and modeling methodologies 

adopted in the past related to crash rates. The following section gives a summary of the 

studies and the benefits/drawbacks of the modeling methodologies adopted. 

3.2 Crash Modeling 

There are different types of modeling methodologies. Each modeling 

methodology is discussed below. 

3.2.1 Single and Multivariate Deterministic Models  

Single-variate and multivariate deterministic models explored relationships 

between crashes and the influencing factors. Many of those relationships were 

qualitative, which incorporated the expert knowledge and past experience. The 

modeling techniques were relatively primitive. 

Zeeger et al., (1994) reviewed highway safety studies and developed 

relationships between vehicle safety and geometric variables like lane width, shoulder 

width, and shoulder type and found significant effects of these variables on highway 

vehicular safety.  

Glennon, (1987) studied the effects of alignment and sight distance on highway 

safety and found that there was no clear effect of improved intersection sight distance 

on highway safety. 

Garber and Ehrhart, (2000) studied the influence of causal factors on the 

occurrence of crashes and found that speed variance had a positive relationship with 

crash rates.  
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The relationships regarding the influence of variables like highway geometric 

parameters on the crash rates were not consistent due to the omission of influencing 

variables, lack of sufficient data or the inherent disadvantage of deterministic models. 

The complexity crashes made researchers use multivariate models in modeling crashes 

as these models accounted for the influences of multiple factors.  

Mohamedshah et al., (1993) developed multivariate linear regression model 

using data from the Highway Safety Information System (HSIS) and achieved good 

results. 

Garber and Ehrhart, (2000) also developed multivariate deterministic models of 

highway crashes using significant independent variables like mean speed, standard 

deviation of speed, flow per lane, lane width, shoulder width and found that speed 

variance had a significant influence on the crash rate. 

3.2.2 Stochastic Models 

Stochastic models assume that the occurrence of vehicular crashes is random 

and showed great potential in obtaining the true models of crashes. Okamoto et al., 

(1989) suggested that the occurrence of traffic crashes is stochastic. Joshua and 

Garber, (1992) first developed several Poisson regression models to describe the 

occurrence of crashes. Various studies further examined the goodness-of-fit of Poisson 

regression models. (Miaou, (1994), Miaou et al., (1992), Hadi et al., (1993), Miaou and 

Lum, (1993), Vogt and Bared, (1998), Ivan et al., (1999)). More stochastic models were 

proposed other than Poisson regression models, which included Zero Inflated Poisson 

(ZIP) (Miaou, 1994), Negative Binomial (Miaou et al., (1992), Miaou, (1994), Karlaftis 

and Tarko, (1998), Fridstrom and Ingebrigtsen, (1991)) and Extended Negative 
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Binomial regression models. While dependent variables in these models are stochastic, 

the link functions are deterministic. The link functions are used to connect the mean of 

crash counts with independent variables.  

3.2.3 Multiple-Logistic Models 

Multiple-Logistic models were also used in crash modeling and were designed to 

describe the probabilities of count variables. They follow S-shaped curve and the value 

of dependent variable improves significantly when the independent variable or the 

function of independent variables of the model reaches certain thresholds.  

Joshua and Garber, (1992) used multiple logistic regression models to analyze 

the relationship between the probability of truck crash involvement and highway 

geometric and traffic variables. 

Lin et al., (1993) applied time dependent logistic regression model to analyze the 

relationship between safety and truck driver service hours. The logistic regression 

models developed found that the driving time had a strong influence on safety 

performance.  

3.2.4 Fault Tree Analysis 

Fault Tree (FT) Analysis is another modeling approach used. The advantages of 

fault tree analysis are: 

1 It can be used to identify the causal factors of crashes clearly and clarify 

the whole possible processes; 

2 The probability of a crash can also be obtained; and 

3 Effective strategies can be provided in accordance with the major and 

secondary factors.  
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Joshua and Garber, (1992) performed fault tree analysis to examine the major 

factors associated with crashes and the interactions among those factors. In a fault tree 

analysis the outcome (crash) is located at the top of the fault tree and all possible 

events or actions in different paths leading to the occurrence of crashes were defined as 

basic events. The probabilities of basic events in the fault tree were assessed from the 

crash data. The basic events were decided as major factors and the interactions 

between the major factors were accounted as secondary factors. The probability of a 

top event was determined through the probabilities of major and secondary factors 

3.2.5 Classification and Regression Tree (CART) Analysis 

Classification and Regression Tree (CART) Analysis is another modeling 

technique. CART’s are non-parametric procedures for explaining and/or predicting 

either a categorical or continuous response. Hakkert et al., (1996) used CART as a 

preliminary tool to explain the relationships between independent variables and road 

crashes. CART was also used to identify significant variables for further analysis. It is 

adaptable in dealing with high dimensional and non-homogeneous data set. The tree 

structure is very helpful to clarify the relationships between independent variables and 

crash event and interactions among independent variables. 

3.2.6 Artificial Intelligence Techniques 

Artificial Intelligence Techniques are other modeling technique used. Fuzzy 

methods, Hybrid techniques and Artificial Neural Networks (ANN) belong to the 

paradigm of artificial intelligence. These techniques are gaining importance and are 

widely being applied in highway safety research.  
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Vaija, (1987) discussed fuzzy methods and applied them in the study of safety. 

Three different fuzzy methods were discussed in that study: the simple fuzzy expert 

system, fuzzy linear regression and fuzzified linear programming. Although the study 

was more about the process control and accident analysis, it was very helpful in the 

modeling of highway crashes since vagueness is common among all kinds of accident 

process. Fuzzy methods discussed in their study presented good modeling alternatives. 

Hybrid techniques combine merits of different methods. (Awad and Jason, 1998) 

applied hybrid system using fuzzy logic and neural networks to predict crash frequency. 

The hybrid system took advantage of the properties and strengths of both fuzzy logic 

and neural networks. The authors concluded that ANN techniques were good choices in 

analyzing highway vehicular crashes because simple models could not represent the 

complex relationships between crashes and causal factors. Apparently, ANN techniques 

require more training data to obtain satisfactory results.  

Artificial neural networks (ANN’s) have been successfully applied in several 

transportation problems. ANN’s do not require any prior information and can properly 

map the input patterns to the output patterns. Najjar et al., (2000) successfully applied 

ANN’s to assess the impact of raising speed limits on Kansas Highways. Ali (2000) 

applied ANN’s for various other Civil Engineering problems and found that ANN models 

were robust compared to all other conventional statistical models. The power of the 

neural networks stems from the fact that they try to resemble the capabilities of the 

human brain. ANN’s possess certain features that have advantageous characteristics, 

which were thoroughly identified by (Haykin, 1994). Some studies (Subba et al., (1998), 
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Faghri and Aneja, (1999)) compared several statistical methods to ANN, and found that 

the ANN’s performance is better in calibration and prediction. 

Al-Alwai et al., (1996) used an ANN model to estimate the number of car crashes 

as a function of several related variables such as population growth and gross domestic 

product. Results of the ANN were compared to a principle component analysis (PCA) 

regression technique and the results demonstrated that the ANN model provided better 

prediction than the PCA model. Mussone et al., (1999) applied artificial neural networks 

to analyze vehicular crashes that occurred at intersections in Milan, Italy. Their results 

showed that ANN are capable of extracting information, in terms of the factors that 

explain crashes and the factors contributing to a higher degree of danger. 

Chong et al., (OSU) studied the National Automotive Sampling System General 

Estimates System automobile accident data from 1995 to 2000 and tried to model the 

severity of injury resulting from traffic accidents. They utilized trained neural networks 

using hybrid learning approaches, decision trees and a hybrid approach involving 

decision trees and neural networks. Their results revealed that in most cases the hybrid 

decision tree-neural network obtains higher accuracy of prediction than the individual 

approaches.  

Abdelwahab and Aty, (2001) studied the 1997 accident data for the Central 

Florida area. The research focused on two-vehicle accidents that occurred at signalized 

intersections. They found out that their MLP neural network with Levenberg-Marquardt 

algorithm as training algorithm achieved 65.6% and 60.4% classification accuracy for 

the training and testing phases, respectively.  
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Yang et al., (1999) used neural network approach to detect safer driving patterns 

that have less chances of causing death and injury when a car crash occurs. They 

performed the Cramer’s V Coefficient test to identify significant variables that cause 

injury, therefore, reduced the dimensions of the data for the analysis. Then, they applied 

data transformation method with a frequency-based scheme to transform categorical 

codes into numerical values. Using a back propagation neural network and the 1997 

Alabama interstate alcohol-related data, they further studied the weights on the trained 

network to obtain a set of controllable cause variables that are likely causing the injury 

during a crash.  

Dia and Rose, (1997) used ‘real-world’ data for developing a multi-layered MLP 

neural network freeway incident detection model. They compared the performance of 

the neural network model and the incident detection model in operation on Melbourne’s 

freeways. Results showed that neural network model could provide faster and more 

reliable incident detection over the model that was in operation on Melbourne’s 

freeways.  

Ljubiè P. et al, (Slovenia) conducted an analysis of a large database containing 

UK personal injury traffic accident data. They use data mining techniques and found out 

some trends and patterns in the dynamic change of the number of traffic accidents 

during time.  

Vogt and Bared, (1998) stated in their literature review that ANN would be a good 

alternative modeling method to the stochastic regression model. 
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3.3 Summary of Literature Review 

From all the modeling techniques the following is a summary of the capabilities of 

each modeling technique based on literature review (Garber and Lei, 2001): 

1. Single-variate and multivariate deterministic models explored qualitative 

relationships between crashes and the influencing factors and mainly 

incorporated the expert knowledge and past experience. Hence the modeling 

techniques were relatively primitive. 

2. Stochastic regression models showed great potential in obtaining the true 

models of crashes. Though stochastic regression models were applied and 

their theoretical disadvantages compensated, past research did not pay 

enough attention to traffic flow parameters and the used data were subject to 

both sampling and non-sampling errors. The resulting models were of limited 

context without widespread applications to support their credibility. Hence the 

success of these models is still futuristic. 

3. Fault tree analysis can clearly identify the causal factors and the whole 

process of crashes, but it is not feasible in large-scale data modeling. Fault 

tree analysis needs the probabilities of the occurrence of a certain number of 

crashes caused by various single factors which is hard to be determined 

because of the difficulty to separate the influences of different factors. 

4. CART can be used preliminarily to analyze the relationships between 

independent variables and crashes and identify critical independent variables 

to be included in the models. 

5. Fuzzy methods are consistent with the characteristics of crashes. 
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CHAPTER 4 - CRASH RATES FOR KANSAS ROAD 

NETWORKS 

4.1 Introduction 

It is a standard practice to review historical crash data for analysis of trends and 

documentation of probable causes of highway crashes. Crash rate trends are an 

effective tool to measure safety hazards on highways as they combine crash frequency 

with vehicle exposure. The main aim of this chapter is to look at the crash rate trends for 

Kansas Road Networks.  

4.2 Database Development 

The first step in this research is the database development. This is the most 

important phase of the entire research as quality of data controls the efficiency of the 

models being developed. Every crash has many attributes and detailed information for 

each attribute is stored in a separate database. An important feature of this research is 

that it interconnects databases that have not previously been used together 

systematically but that, when fused, create a rich environment for developing crash 

prediction models. 

The main source of data is the Kansas Accident Recording System (KARS). 

KARS connects several smaller databases and forms datasets which contain general 

roadway information (e.g., lane width, surface type, and shoulder type) for each 

roadway. Crash records include data on vehicles, drivers, roadway conditions, and the 

severity of the crashes. Traffic Volume information is obtained from High Accident 
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Location System (HALS) database. KARS and HALS databases are combined to give 

the final datasets used for predicting crash rates on the Kansas Road Networks. 

4.2.1 Kansas Accident Recording System (KARS) 

KARS is a comprehensive database maintained by the KDOT having crash 

records since 1990. Only the police reported crashes are included in this system. Every 

crash in the system is identified by a unique accident key. KARS connects all the 

smaller databases based on this unique key to give detailed information for every crash.  

4.2.2  High Accident Location System (HALS) 

This database is mainly used for identifying the high accident locations for the 

state of Kansas. This database reflects the most up to date information on the traffic 

flow for each roadway section. To capitalize on latest traffic flow information for each of 

the sections, used in this research, this database is used.  

4.3 Road Networks 

The entire Kansas road network is divided into two major categories Rural and 

Urban. Within each category the roads are further classified into different types. A total 

of six road networks have been formed using the database. The networks are as 

follows: 

1. Rural 

• Rural 2-lane (R2L) 

• Rural Expressways (RE) 

• Rural Freeways (RF) 

• Rural KTA (RKTA) 

2. Urban 
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• Urban Freeways. (UF) 

• Urban Expressways (UE) 

The KDOT traffic-crash historical database (KARS) was be used to compile a 

yearly breakdown of the following crash-related categories: 

i. Total Crash Rate (TCR) [Injury + Fatal+ Property Damage Only]  

ii. Injury Crash Rate (ICR) [Disabling Injury + Possible Injury + Non-

Incapacitating Injury] 

iii. Severe Injury Crash Rate (SICR) [Disabling Injury + Fatal] 

iv. Fatal Crash Rate (FCR) [Fatal] 

4.4 Limitations and Definitions Adopted 

The limitations and definitions adopted in this research are as follows: 

• Only the state system roads have been included in this study because 

crashes occurring on the state system have accurate and up to date 

information on the traffic volumes and roadway geometric characteristics. 

All other roads do not have the necessary information. Without accurate 

information on traffic volumes it would not be possible to calculate crash 

rates. In order to have quality data sets for modeling, all the non-state 

system roads have been excluded. 

• All the sections that have undergone major reconstruction changes have 

been excluded. This way only sections that have remained constant 

throughout the study period are present in the data. This again is a check 

for quality data.  
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• The entire road network is divided into smaller sections. So every accident 

is associated with a section. Accidents at the junction of two sections are 

always associated with the subsequent section (i.e. section starting next, 

in the direction of travel).  

• In this research the following definitions have been adopted in order to 

identify freeways and expressways: 

• Freeways: Multi-lane, divided arterials with full access control at grade-

separated interchanges  

• Expressways: Multi-lane, divided arterials with access limited primarily to 

grade-separations and at grade intersections. 

• Both Freeways and Expressways are minimum two-lane facilities with 

posted speed limit >=45 mph. 

4.5 Logic Used for Identifying Crashes 

Four primary crash categories have been included in this study. There are three 

types of injury crashes in the database. They are Disabling Injury Crashes, Non-

Incapacitating Injury Crashes and Possible Injury Crashes. All these three categories 

have been summed into one category- the Injury crashes. The Disabling Injury Crashes 

are summed up with the Fatal Crashes and are called Severe Injury Crashes. The 

Injury, Non-Injury and Fatal Crashes are summed into one category-Total Crashes. 

The following logic has been used to identify the crashes while querying the 

database: 

• Fatal Crash: where # of Fatalities >0 

• Disabling Injury crash: where # of Fatalities =0 and # of Disabled >0 
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• Non-Incapacitating Injury crash: where # of Fatalities =0 and # of 

Disabled =0 and # of Non-incapacitating Injury >0    

• Possible Injury crash: where # of Fatalities =0 and # of Disabled =0 and 

# of Non-incapacitating Injury =0 and # of Possible Injury >0 

• Sever Injury crash: where # of Fatalities >0 OR # of Disabled >0  

4.6 Crash Rates 

All crash rates except fatal crash rate are expressed per million vehicle miles of 

travel. The fatal crash rate is expressed per 100 million vehicle miles of travel. The 

formulae used for calculating the crash rates are given in Equations 4.1, 4.2, 4.3 and 

4.4. 

Total Crash Rate (TCR) [Injury + Fatal+ PDO] 

1,000,000 * Total CrashesTCR       
(AADT*Section Length* 365)

⎛ ⎞
= ⎜ ⎟Σ⎝ ⎠  Equation 4.1 

Injury Crash Rate (ICR) [Disabling + Possible + Non-Incapacitating]  

1,000,000 * Injury CrashesICR       
(AADT*Section Length* 365)

⎛ ⎞
= ⎜ ⎟Σ⎝ ⎠  Equation 4.2 

Severe Injury Crash Rate (SICR) [Disabling + Fatal] 

1,000,000 * SevereInjury CrashesSICR       
(AADT*Section Length* 365)

⎛ ⎞
= ⎜ ⎟Σ⎝ ⎠  Equation 4.3 
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Fatal Crash Rate (FCR) [Fatal] 

100,000,000 * Fatal CrashesFCR       
(AADT*Section Length*365)

⎛ ⎞
= ⎜ ⎟Σ⎝ ⎠  Equation 4.4 

The crash rates calculated using above equations are tabulated by network type 

and shown in Table 4.1. Table  4.2 shows the results by crash rate type. The results 

shown in these tables have been plotted (See Figures 4.3, 4.4 and 4.5) to clearly depict 

the trends in crash rates by network type and crash rate type. These trends would give 

a clear picture of trends on each network over the years and also would serve as a tool 

for preliminary estimate of crash rates for future years on a particular road network. The 

average crash rate values for all networks are given in Table 4.3.  

4.7 Discussion of Results 

The crash rate trends shown in Figures 4.3 and 4.4 give us an idea of crash rates 

for the rural and urban networks. The following are the observations: 

• For all the networks except Urban Expressways it can be seen that the 

Total Crash Rate shows an increasing trend. All the other crash rates 

remain fairly constant all throughout. 

• In Figure 4.5 it is slightly difficult to generalize the crash trends for each 

network. Hence best fit trend lines have been plotted for all networks and 

are shown in Figure 4.6 Figure 4.1. 

• Figure 4.6 shows the plots by roadway category. The observations from 

the trends lines are: 

o For all networks the TCR increases up to 1997. For all the rural 

networks the TCR remains constant from 1997 to 2001. For the 
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Urban networks the TCR decreases for urban expressways from 

1997 to 2001 and remains constant for urban freeways.  

o ICR increases slightly for Rural KTA and remains constant for the 

remaining rural networks and urban freeways. In case of urban 

expressways it remains constant until 1997 and then decreases.  

o SICR and FCR remain constant for all road networks. It is hard to 

predict the trends from this figure. Figure 4.1 zooms on the crash 

rates and would give a clearer picture for SICR and FCR. 

• Figure 4.1 shows the plots by crash rate type. The observations from the 

trends lines are: 

o For TCR, all the road networks show an increasing trend up to 

1997 and then remain constant.  

o For Rural KTA ICR increases up to 1998 and then decreases 

slightly. For Urban Expressway ICR increases up to 1995 and then 

decreases. For all other networks ICR remains constant up to 1997 

and then decreases slightly 

o SICR and FCR do not have any consistent pattern. The reason for 

this behavior is due to limited number of datasets. Though we see 

increasing decreasing patterns for the networks the amount of 

increase or decrease is very small. We can say that the there is no 

definite trend or they remain fairly constant  

• Figure 4. shows the histogram for average crash rates for all road 

networks. The observations from the histogram are: 
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o For TCR, Rural 2 Lane has the highest average TCR in the rural 

network and Urban Expressways has the highest average TCR in 

the urban network. For all the networks combined Urban 

Expressways has the highest average TCR.  

o For ICR, Rural 2 Lane and Rural KTA have the highest average 

ICR in the rural network and Urban Expressways has the highest 

average TCR in the urban network. For all the networks combined 

Urban Expressways has the highest average ICR. 

o For SICR, Rural 2 Lane has the highest average SICR in the rural 

network and Urban Expressways has the highest average SICR in 

the urban network. For all the networks combined Urban 

Expressways has the highest average SICR  

o For FCR, Rural 2 Lane has the highest average FCR in the rural 

network and Urban Expressways has the highest average FCR in 

the urban network. For all the networks combined Rural 2 Lane has 

the highest average FCR. 

4.8 Conclusions 

The following conclusions can be deduced based on earlier discussion. 

• Based on observations from Figures 4.6, 4.5 and 4.6, it can be said that 

TCR for all road networks increases up to 1997 and then remains 

constant, ICR/SICR/FCR do not have a common trend for the entire 

network as a whole. 
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• Among the Rural Networks Rural 2 Lane has highest crash rates and 

among Urban Networks Urban Expressways has the highest crash rates. 

• The crash rate trends are a good starting point for data mining the crash 

database as we have some preliminary values to expect.  
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1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 Average
0.491       1.017       0.798       0.883       0.993       0.952       1.125       0.999       0.943       0.951       0.915       
0.132       0.244       0.222       0.242       0.286       0.260       0.294       0.269       0.251       0.254       0.245       
0.029       0.043       0.055       0.027       0.050       0.043       0.047       0.060       0.046       0.052       0.045       
0.005       0.008       0.007       0.004       0.007       0.001       0.001       0.012       0.007       0.005       0.006       

1.149       1.359       1.317       1.430       1.469       1.560       1.618       1.558       1.458       1.543       1.446       
0.245       0.276       0.250       0.256       0.268       0.257       0.260       0.236       0.221       0.223       0.249       
0.088       0.092       0.081       0.086       0.092       0.088       0.088       0.084       0.075       0.075       0.085       
0.021       0.025       0.021       0.022       0.025       0.023       0.026       0.024       0.021       0.024       0.023       

0.553       0.632       0.682       0.929       1.135       0.637       0.806       0.834       0.821       0.930       0.796       
0.150       0.157       0.163       0.196       0.277       0.123       0.164       0.165       0.150       0.162       0.171       
0.063       0.052       0.059       0.046       0.074       0.043       0.057       0.058       0.046       0.068       0.057       
0.014       0.003       0.014       0.008       0.005       0.011       0.016       0.013       0.015       0.022       0.012       

0.523       0.794       0.616       0.720       0.713       0.790       0.820       0.714       0.699       0.699       0.709       
0.105       0.145       0.125       0.146       0.145       0.142       0.148       0.136       0.136       0.124       0.135       
0.034       0.044       0.052       0.045       0.044       0.042       0.044       0.042       0.041       0.039       0.043       
0.006       0.007       0.009       0.010       0.007       0.007       0.006       0.009       0.009       0.008       0.008       

1.502       1.630       1.481       1.547       1.744       1.822       1.925       1.778       1.525       1.556       1.651       
0.364       0.438       0.417       0.415       0.486       0.448       0.428       0.334       0.331       0.230       0.389       
0.118       0.099       0.076       0.096       0.129       0.107       0.101       0.071       0.063       0.048       0.091       
0.013       0.025       0.006       0.013       0.030       0.020       0.010       0.031       0.018       0.009       0.017       

0.842       1.120       0.919       1.101       1.197       1.168       1.225       1.208       1.121       1.163       1.106       
0.179       0.215       0.202       0.226       0.256       0.222       0.226       0.208       0.195       0.182       0.211       
0.034       0.046       0.041       0.047       0.050       0.045       0.049       0.047       0.037       0.033       0.043       
0.002       0.004     0.005     0.005     0.006     0.008      0.006     0.005     0.004     0.006     0.005       

Rural KTA

Rural 2 Lane

Rural Expressways

Injury Crash Rate

Fatal Crash Rate

Total Crash Rate

Severe Injury Crash Rate

Year--------------------->

Rural Freeways

Urban Expressways

Urban Freeways

Severe Injury Crash Rate

Total Crash Rate

Total Crash Rate

Fatal Crash Rate

Injury Crash Rate

Fatal Crash Rate

Injury Crash Rate

Fatal Crash Rate

Injury Crash Rate
Severe Injury Crash Rate

Severe Injury Crash Rate

Total Crash Rate

Injury Crash Rate
Severe Injury Crash Rate

Total Crash Rate

Fatal Crash Rate

Rate Type

Fatal Crash Rate

Injury Crash Rate
Severe Injury Crash Rate

Total Crash Rate

 

 

 

Table 4.1: Crash rates by network type 
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1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 Average
0.491      1.017      0.798      0.883      0.993      0.952      1.125      0.999      0.943      0.951      0.915          
1.149      1.359      1.317      1.430      1.469      1.560      1.618      1.558      1.458      1.543      1.446          
0.553      0.632      0.682      0.929      1.135      0.637      0.806      0.834      0.821      0.930      0.796          
0.523      0.794      0.616      0.720      0.713      0.790      0.820      0.714      0.699      0.699      0.709          
1.502      1.630      1.481      1.547      1.744      1.822      1.925      1.778      1.525      1.556      1.651          
0.842      1.120      0.919      1.101      1.197      1.168      1.225      1.208      1.121      1.163      1.106          

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 Average
0.132      0.244      0.222      0.242      0.286      0.260      0.294      0.269      0.251      0.254      0.245          
0.245      0.276      0.250      0.256      0.268      0.257      0.260      0.236      0.221      0.223      0.249          
0.150      0.157      0.163      0.196      0.277      0.123      0.164      0.165      0.150      0.162      0.171          
0.105      0.145      0.125      0.146      0.145      0.142      0.148      0.136      0.136      0.124      0.135          
0.364      0.438      0.417      0.415      0.486      0.448      0.428      0.334      0.331      0.230      0.389          
0.179      0.215      0.202      0.226      0.256      0.222      0.226      0.208      0.195      0.182      0.211          

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 Average
0.029      0.043      0.055      0.027      0.050      0.043      0.047      0.060      0.046      0.052      0.045          
0.088      0.092      0.081      0.086      0.092      0.088      0.088      0.084      0.075      0.075      0.085          
0.063      0.052      0.059      0.046      0.074      0.043      0.057      0.058      0.046      0.068      0.057          
0.034      0.044      0.052      0.045      0.044      0.042      0.044      0.042      0.041      0.039      0.043          
0.063      0.052      0.059      0.046      0.074      0.043      0.057      0.058      0.046      0.068      0.057          
0.034      0.046      0.041      0.047      0.050      0.045      0.049      0.047      0.037      0.033      0.043          

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 Average
0.005      0.008      0.007      0.004      0.007      0.001      0.001      0.012      0.007      0.005      0.006          
0.021      0.025      0.021      0.022      0.025      0.023      0.026      0.024      0.021      0.024      0.023          
0.014      0.003      0.014      0.008      0.005      0.011      0.016      0.013      0.015      0.022      0.012          
0.006      0.007      0.009      0.010      0.007      0.007      0.006      0.009      0.009      0.008      0.008          
0.013      0.025      0.006      0.013      0.030      0.020      0.010      0.031      0.018      0.009      0.017          
0.002      0.004    0.005    0.005    0.006    0.008    0.006      0.005    0.004    0.006    0.005          

Severe Injury Crash Rate

Rural KTA

Rural KTA

Urban Freeways

Urban Expressways
Urban Freeways

Fatal Crash Rate

Injury Crash Rate

Rural KTA

Rural Expressways
Rural Freeways

Urban Expressways

Rural 2 Lane

Rural 2 Lane
Rural Expressways

Rural Freeways
Urban Expressways

Urban Freeways

Urban Freeways

Rural Expressways
Rural Freeways

Urban Expressways

Total Crash Rate

Rural KTA
Rural 2 Lane

Rural 2 Lane
Rural Expressways

Rural Freeways

 

Table 4.2: Crash rates for each network by crash rate type 
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 Total Injury Severe. Injury Fatal 
Rural KTA 0.9152 0.2454 0.0452 0.0057 

Rural 2 Lane 1.4461 0.2492 0.0849 0.0232 
Rural Expressways 0.7959 0.1707 0.0566 0.0121 

Rural Freeways 0.7088 0.1352 0.0427 0.0078 
Urban Expressways 1.651 0.3891 0.0908 0.0175 

Urban Freeways 1.1064 0.2111 0.0429 0.0051 

Table 4.3:Average crash rate values for all road networks 

Figure 4.1: Crash rates for the urban network 
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Figure 4.2: Crash rates for all networks by crash rate type 
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Figure 4.3: Average crash rates for all road networks 
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CHAPTER 5 - CRASH MODELING AND SENSITIVITY 

ANALYSIS 

5.1 Introduction 

The modeling methodology adopted for all networks considered in this study, is 

basically the same. Hence, only one network will be discussed in detail. For remaining 

networks, only the modeling results will be discussed. This chapter will concentrate on 

the details associated with the modeling process and its outcomes in relation to the 

Rural Expressways Network.  

5.2 Rural Expressways Network 

The KARS database is queried to separate all the accidents related to this 

network. The entire network is made up of small sections. Crash rates for each section 

are calculated and are used in modeling. The input variables consisted of two types 

(continuous variables and categorical variables). Table 5.2 shows all the input variables 

for the Rural Expressway network. The continuous variables have a numerical value 

and the categorical variables have a binary code. The input variables include geometric 

variables, traffic volume, speed and Heavy Vehicle (%).  

5.3 Distributions of Variables 

Histograms were plotted to give the distribution of categorical and continuous 

variables. The histograms are shown in Figures 5.1 and 5.2 With the help of these 

distributions, we would know the percentage representing each of the variables in the 

entire dataset. Each of categorical variables is made up of different types. A brief 
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description of the different types is given below. It is to be noted that only the variables 

used in the final model are discussed herein. 

5.3.1 Categorical Variables 

There are four types of categorical variables. 

1. Route Class 

The classification of roadways into different categories (classes) is one of the basic 

steps of a sound planning process. The most obvious reason to stratify and distinguish 

between roads is the available funds, which usually are not sufficient to provide equally 

good service on all facilities. Federal funding eligibility is tied to a road’s functional 

classification, thereby, increasing the need for classification. The KDOT classifies its 

roads into five classes. The higher classes account for a smaller portion of the total 

mileage but the greater part of the vehicle miles of travel. The guidelines for 

classification were based on national averages and do not necessarily meet the needs 

of individual states. The Route Class variable determines the class of the roadway. In all 

there are five classes of roads in the entire Kansas database. A Brief description of 

each class is given below: 

a. Route Class A coincides with the Interstate System (National System of 

Interstate and Defense Highways). As its name implies, its primary civilian function is to 

serve interstate travel. This class occupies the highest position compared to any other 

class and serves large number of vehicles traveling long distances. The design and 

operations of this class is much superior compared to other classes.  

b. Route Class B along with Route Class A serves the most important 

corridors of statewide and interstate auto as well as heavy truck travel. Nearly all cities 
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with a population over 10,000 are within ten miles of these routes. Incorporation of a 

facility as a Route Class B implies a commitment to the high standards throughout its 

length, regardless of the possibility of lower volumes on part of the route.  

c. Route Class C is also an important part of the statewide arterial system 

and is integrated with Classes A and B to provide efficient service to all areas of the 

State. While some interstate travel occurs on the Class C Routes, their principal 

function is to provide person and commodity movement between regions of the State. 

Because of a high number of commuter trips, some of the Class C Routes which radiate 

out from the metropolitan areas are among the highest volume routes in the State. Even 

though local traffic makes up a larger portion of the traffic stream, these are also 

important arterial routes. The higher volume segments of Class C Routes have the 

same design standards as Class B Routes. 

d. Route Class D contains routes that serve both inter-county movement as 

well as routes that provide access to the arterial routes for county seats and other small 

urban areas that are not on a Class A, B or C Route. The importance of these routes for 

commercial service is related primarily to the small communities they serve. The 

percent of trucks on these routes should generally be low, but specific sections serving 

commercial traffic generators may carry a large number of trucks. Almost no interstate 

mobility is provided, except as access connectors to an interstate route; however, there 

may be trips to local industries involved in interstate activities. Many Class D state 

highways serve the same function as roads maintained by counties. 

e. Route Class E is made up of stubs and routes whose service is limited 

almost exclusively to local travel. Truck traffic typically makes up a small percent of the 
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total number of vehicles, but may be significantly higher if there is local industry 

generating large numbers of trips. The average trip length is generally short but may 

vary widely, depending on the nature of the local area served. The Class E system of 

roads generally serves traffic which originates from county or township roads. 

Figure 5.1a shows the distribution plot for Route Class. It can be seen that Route 

Class C (48%) and Route Class B (40%) constitute the major portion of the Rural 

Expressway Network. Route Class D (9%) and Route Class E (3%) combined represent 

12% of the network. This network does not have Class A roads. The network serves 

important corridors of statewide and interstate auto as well as heavy truck travel, via its 

Routes B and C.  

2. Median Type 

Rural multi-lane expressways include some type of median treatment. This 

median could be a variety of types, such as depressed median, raised median with turn 

lanes, or barrier. The medians usually are non-traversable type but in some situations 

as in the case of at-grade intersections, painted medians are traversable. Figure 5.1b 

shows the distribution plot for Median Types. Depressed Median or Median Type 6 

(64%) constitutes the major portion of this network. This is followed by Raised Median + 

Turning Lanes or Median Type 4 (30%) and then followed by Barrier Median or Median 

Type 3 (6%).  

For multi-lane expressways in most rural environments, a depressed median is 

the most preferred median treatment which is reflected from the histogram plot in Figure 

5.1b. The depressed median allows flexibility on running independent grades, while 

providing a larger separation between travel directions. It is generally used on rural 
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multi-lane expressways, where right of way is available. From literature review it can be 

seen that the depressed medians are much safer compared to other medians.  

The raised median with turn lanes is usually preferred in rural developed areas 

such as rural communities and development centers. The presence of a raised median 

with turn lanes increases the chance for crashes because of vehicles slowing down to 

make left turns.  

Barrier medians are provided in cases where there are right of way restrictions. 

Placing a barrier median largely eliminates the severe cross-median accidents. At the 

same time, the barrier becomes the target of collisions that would otherwise not occur. It 

will cause additional crashes by deflecting vehicles back into the traffic stream. In 

addition, for narrow medians, the barrier seems to cause increases in speed in the 

median lane, and changes in vehicle placement, which reduces the clearance between 

parallel streams. There are positive and negative effects associated with this type of 

median. The overall effect is dependent on the prevailing conditions and therefore 

varies from place to place. 

3. Shoulder Type Inside  

Roadways are provided with different types of shoulders and the mechanisms by 

which they impact safety are very diverse. Depending on the type of Shoulder they 

serve different purposes. For example gravel shoulders alert the stray driver, paved 

shoulders allow drivers to regain loss of control etc. Shoulder Type Inside is provided on 

the left side of the roadway. Figure 5.1c shows the distribution. Bituminous Base 

(Shoulder Type 11) constitutes a major portion (61%) of the network. The remainder 

sections have Curb and Gutter (Shoulder Type 19, 14%), Portland Cement Concrete 
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(P.C.C.) Shoulder (Shoulder Type 29, 6%) and Aggregate Base Stabilized (A.B.S) 

Shoulder (Shoulder Type 5, 19%) 

4. Shoulder Type Outside 

These also serve the same purpose as inside shoulders. Shoulder Type Outside 

is provided on the right side of the roadway. Figure 5.1d shows the distribution. Outside 

Curb and Gutter shoulders (Shoulder Type 19) constitutes a major portion (33%) of the 

network while other types [Bituminous Base (20%), Portland Cement Concrete (P.C.C.) 

(20%), and Aggregate Base Stabilized (A.B.S) (6%)] make for the remaining significant 

parts (i.e., each represents at least 5% of the total).  

5.3.2 Continuous Variables 

There are five types of continuous variables.  

1. Surface Width 

This variable is used as alternative for the number of lanes. Figure 5.2a shows 

the distribution plot for Surface Width. A majority of the network has a surface width of 

24 feet (70%). The remainder of the network has surface widths 29 feet (18%), 27feet 

(7%), 26 feet (3%) and 28 feet (2%).  

2. AADT 

Figure 5.2b shows the distribution plot for AADT. 50% of the network sections 

have an AADT of (<=3000 vehicles), 29% of them have AADT between 3000 and 6000 

vehicles and the remainder 21% have AADT between 6000 and 9000 vehicles.  

3. Heavy Vehicles 

Figure 5.2c shows the distribution plot for percentage of Heavy Vehicles (%HV) 

As can be noted, 49% of the sections have %HV between 5% and 10%, while 20% of 
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the sections have %HV between 10% and 15%. 17% of the sections have %HV value of 

less than 5%. The remainder (14%) sections have HV percentages between 16% and 

30% as indicated in Figure 5.2c.  

4. Speed limit 

Figure 5.2d depicts the distribution plot for Speed Limit. In this network, the 5-

year average speed limits varied from 45 mph to 70 mph. The predominant speed limits 

were 55 mph and 65 mph, each accounting for almost 20% of the network’s sections. 

Please note that the speed limits have been averaged over a 5 year period and hence 

we may have values that are not divisible by 5. 

5. Median width 

Figure 5.2e shows the distribution plot for the Median Width. In this case, the 

widths varied from 5 feet to 30 feet. The predominant width is 30 feet, which was used 

on about 27% of network’s sections. A notable number of sections were built with 

median widths of 9, 15, 18 and 7 feet. Those sections represent about 50% of the 

networks’ total sections. The remaining section (representing less than 5% of the 

network total) used various median widths ranging from 5 to 25 feet.  

5.4 Training Methodology 

Crash rates were calculated for each section in the network and then averaged 

over two time-frame periods. The first time-frame period is from 1992 to 1995, while the 

second time-frame period uses the data from 1996 to 2001. This procedure yielded two 

datasets for each section, one for each 5-year period. In so doing, for this network, this 

resulted in 49 sections and 98 datasets. 
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The maximum and minimum values of all the continuous variables in the input file 

were found. This was done to get the ranges for each variable. Based on the above 

values the maximum and minimum values for the neural network being trained are 

established. The categorical variables have binary values as their maximum and 

minimum. Once the values are fixed, the network makes sure that the limits are not 

exceeded. Table 5.2 gives the maximum and minimum values of all input variables. The 

entire data is then divided into training, testing and validation data sets. Care has been 

taken to include correct exemplars in the training, testing and validation data sets to 

ensure that the developed model will be used in an interpolation mode. Training utilized 

49 datasets, testing and validation utilized 25 and 24 datasets each. All input/output 

parameters were normalized to numerical values between 0 and +1.0. This was done to 

improve generalization and reduce the large numerical variability among the values of 

input (or output) parameters. If this normalization is not performed, it could significantly 

affect the weight adjustment process during training, hence affecting the prediction 

accuracy of the network. The models were trained to map an input vector of 

dimensionality forty five (45) into an output vector of dimensionality four (i.e., a mapping 

from R45 to R4, where 45 is the total initial number of input variables). The data is trained 

using a Multilayer Perceptron (MLP) neural network with standard back-propagation 

algorithm. The MLP program used in this research is TR-SEQ developed by Najjar and 

Ali (1998). The chosen MLP has an Input Layer, One Hidden Layer and an Output 

Layer. The basic schematic is shown in Figure 5.3  
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Before training, the connection weights are set to small random values as 

explained earlier, including the weights connecting the biases to the hidden and output 

layers. Then after each training step, a new set of connections is determined.  

The model building process started with a full model that uses all input variables 

shown in Table 5.2. Then, reduced, but more efficient, models were obtained using a 

selected set of variables. The number of input nodes started at 45 nodes, representing 

the 45 input variables listed in Table 5.2. Iterations were carried out from 1 to 1000 with 

hidden nodes ranging from 1 to 10.  

The structure of the MLP needs to be fixed using this iterative process. The first 

training helps us in determining the maximum number of hidden nodes and the 

iterations needed. To assess the potential success of this set of connections after each 

epoch (iteration), statistical accuracy measures such as the overall Coefficient of 

Determination Factor (or simply R2), Mean Average Relative Error (MARE), and the 

Average Squared Error (ASE) are evaluated. Table 5.3 gives the results of the first 

training. Only the training datasets are used during this process. The testing datasets 

were then run to see how the model predicts them.  

The best network was obtained at 800 iterations and with 3 hidden nodes. If we 

examine Table 5.3, it can be noted that the training R2 (0.96986), and the testing R2 

(0.0127) are far apart. The (MARE) and the (ASE) values for training and testing are 

also not close. This suggests that the underlying logic from the training datasets has 

been well captured by the MLP network, but there is an additional logic associated with 

the testing datasets. In order to re-check this, a test run is made using the validation 

datasets to see how the network performed. The results are listed in Table 5.4. The 
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results suggest that the network did not do well on the validation datasets. In order to 

extract the complete logic present in the database, a final run using all datasets 

(training, testing and validation) is performed and the connection weights are updated. 

The starting nodes, maximum number of hidden nodes and iterations are not altered in 

this process. This procedure allows us to extract extra logic without overtraining. Table 

5.5 presents the final overall model performance results.  

After this step, the maximum hidden nodes, maximum iterations and connection 

weights are fixed for the MLP. At this stage, all input variables are present. In the next 

phase some variables are dropped from the model and the network is re-trained. This 

re-training is performed to ensure that only significant variables are retained in the final 

model. The first variable to be dropped was the Subsection (SS) associated parameter.  

From Table 5.6, it can be seen that when the Subsection (SS) parameter is 

dropped, an increase in R2, a decrease in MARE and in ASE are noted. Hence, SS is 

dropped out of the model. Accordingly, the same process is repeated with other input 

variables as noted in Table 5.7 and Table 5.8. In each process, one variable is 

eliminated. This process, is discontinued when the MARE and the ASE could not be 

improved any further. As noted in Table 5.9, dropping any additional variables would 

negatively impact the MARE, and the ASE values. Hence, the input-variable elimination 

process is stopped. The final network structure, after dropping three variables (i.e., 

Subsection, Shoulder Width Outside, and Shoulder Width Inside), is given in Table 5.10.  

Following this cycle of variable elimination and importance evaluation, all needed 

input variables are fixed. The final model was selected based on the highest accuracy 

on the testing and validation datasets. In all, 21 variables will be included in the final 
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ANN-based model. Subsequently, the entire process of training, testing and validation 

to obtain the final network is activated. The difference between training at this stage 

from that at the initial training stage is that, the network’s optimal hidden nodes are 

known. The training is done to re-calculate the connections weights and improve the 

accuracy of the network. When some of the input variables are dropped, the “best 

network” obtained from initial training is no longer the “best”. Hence the entire process is 

repeated with the new input layer. Tables 5.11, 5.612 and 5.713 list the results 

obtained. Table 5.14 gives the final list of input variables included in the final model. 

The best overall network was obtained at 900 iterations and 3 hidden nodes. 

Hence the MLP final model has 21 input nodes, 3 hidden nodes, and 4 output nodes. 

The output layer of the MLP model consists of four neurons, representing the four crash 

rates. Figure 5.4 shows the structure of the final MLP neural network model. The 

structure of final model can be expressed in the following mathematical form (i.e., 

Equation 5.1).  

1, 2 3 4 21-3-4 1 2 3 4 21 (Y  Y , Y , Y )  ANN (X , X , X , X  X )= …  Equation 5.1 

Where: 

1

2

3

4

Y  Severe Injury Crash Rate, 
Y   Injury Crash Rate, 

Outputs
Y   Fatal Crash Rate, and 
Y   Total Crash Rate

=⎧ ⎫
⎪ ⎪=⎪ ⎪= ⎨ ⎬=⎪ ⎪
⎪ ⎪=⎩ ⎭
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1

2

3 6

7 10

11 14

15 17

18

19

20

X Section Length, 
X   Surface Width, 
X  - X   Route Class,
X  - X   Shoulder Type Inside,
X  - X   Shoulder Type Outside,

Inputs
X  - X   Median Type, 
X   Median Width,
X   Average ADT,
X  

=

=

=

=

=
=

=

=

=

21

 Average Percentage of Heavy Vehicles,
X   Average Speed Limit

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪=⎪ ⎪
⎪ ⎪=⎩ ⎭

 

Here, 21-3-4 represents 21 Inputs, 3 Hidden Nodes, and 4 Outputs. The R2 

values for the overall model and the each individual crash rate are: R2 (Model) = 0.7034,  

R2 (SICR) = 0.7951, R2 (ICR) = 0.7888, R2 (FCR) = 0.4706, and R2 (TCR) = 

0.7592 

As stated earlier, the described modeling methodology will also be used to model 

the crash rates for the remaining 5 networks. All results associated with these 5 

networks are discussed in the next chapter.  

5.5 Sensitivity Analysis 

After the final structure is obtained, sensitivity analysis was performed on the 

input variables included in the final model. The sensitivity analysis would quantify, to 

some degree, the effect of each variable on the crash rates. To investigate the effect of 

continuous variables, each selected variable was given several values while keeping all 

other, un-related, variables stationary. Crash rates were then calculated and graphical 

trends are plotted. Once the sensitivity analysis was completed, the network’s 

associated categorical variables were ranked from worst to best cases.  
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5.5.1 Development of Ranking Procedure 

The ranking of categorical variables can easily be done if we are to rank them on 

the basis of a specific crash rate type. However, if the purpose is to determine an 

overall ranking based on all crash rates, this becomes a difficult task achieve. To 

overcome this dilemma, all categorical variables were first ranked for each crash rate 

type and the results were presented to a group of people to obtain an overall ranking. 

The individual ranking results were then compared in order to examine whether the 

rankings are consistent. As expected, the overall rankings were not consistent. For 

example (see results in Table 5.15) tables similar to Table 5.15 were given to the group 

and everyone was asked to give an overall ranking while taking into consideration 

individual ranking of each crash rate type. By examining the results given in Table 5.15, 

it can be seen that Route Class A is ranked the best while Route Class E is ranked the 

worst for three crash rate types. Positions in between varied between Route Classes B, 

C and D. When overall ranking was asked for, the study group Ranked A as best and E 

as worst. But the in-between ranking order was inconsistent. In order to resolve this 

overall ranking problem, a Combined Crash Potential Index (CCPI) was developed. In 

this case, it was decided to associate specific weight factors (i.e., degree of importance) 

to each crash rate. An iterative process was conducted to select the most appropriate 

weight factor, for each crash rate type, in order to establish consistent overall ranking 

process. The final expression for the CCPI, adopted in this study, is given in Equation 

5.2. 

CCPI  (TCR)  (2* ICR)  (5* SICR)  (10* FCR) = + + +  Equation 5.2 
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Where CCPI = Combined Crash Potential Index, TCR = Total Crash Rate, ICR = 

Injury Crash Rate, SICR = Severe Injury Crash Rate, and FCR = Fatal Crash Rate.  

In the process of developing the weight factors, initial weights (based on the 

perceived importance of each crash rate type in comparison with the other 3 crash 

rates) were assigned and final overall rankings were obtained. Subsequently, the 

weights developed for one categorical variable were also used for other variables and 

then tested whether the overall ranking order obtained was consistent with the overall 

ranking given by the study group. The main goal of this iterative process was to select a 

set of weight factors that will be universally applicable for all associated categorical 

variables. After several iterations, the final set of weight factors were obtained as can be 

seen in Equation 5.2. Note that a weight factor, to some degree, reflects the degree of 

importance of its associated crash rate type in relative to other crash rates. For 

example, FCR is almost 10 times more significant than TCR. 

Utilizing Equation 5.2, CCPI values associated with each categorical variable 

were obtained. Using the resulting CCPI values, all parameters within each categorical 

variable can be easily ranked. The resulting overall categorical variable rankings are 

given in Table 5.16. 

5.5.2 Sensitivity of Categorical Variables 

The overall rankings reported in this section are based on the CCPI values listed 

in Table 5.16. 

1. Route Class 

From crash potential point of view, Route Classes B and C are worst, Route 

Class D is moderate and Route Class E is best. The crash rates are expected to be 
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higher on Route B and lower on Route E considering the facility type. The results are 

not in consistence with KDOT classification. The reasons for inconsistency might be due 

to changes in traffic patterns and flow, new developments or change of roadway 

features.  

2. Median Type 

Based on the calculated CCPI values for this case, Raised Median with Turning 

Lanes (Median Type 4) is the worst, Depressed Median (Median Type 6) is moderate 

and Barrier (Median Type 3) is the best. From the literature, one would expect 

Depressed Median to be the best, but in our case Barrier Median is the best. There 

might have been many left turn crashes on this network which has pushed Raised 

Median with Turn Lanes to the worst spot.  

3. Shoulder Type Inside 

Based on the calculated CCPI values listed in Table 5.16, Bituminous Base type 

shoulder is expected to be associated with the highest overall crash rates, P.C.C 

Shoulder is expected to be associated with moderate crash rates and, Aggregate Base 

Stabilized (A.B.S) and Curb and Gutter shoulders are expected to be associated with 

the least overall crash rates.  

4. Shoulder Type Outside 

As indicated by the CCPI values listed in Table 5.16, Bituminous Base is 

expected to be associated with the highest overall crash rates, Curb and Gutter is 

expected to be associated with moderate crash rates and, Aggregate Base Stabilized 

(A.B.S) and P.C.C Shoulders are expected to be associated with the least overall crash 

rates. From the literature, it is known that roads with paved shoulders are associated 
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with fewer crashes than similar roads with unpaved shoulders. Once again, it is difficult 

to generalize the behavior of crash rates by shoulder type. It is very difficult to 

completely isolate the influence of the shoulder type on crash rates from other inter-

related variables.  

5.5.3 Sensitivity of Continuous Variables  

Graphical results (trends) of the associated sensitivity analysis are presented in 

Figures 5.5. 

1. Surface Width 

Generally speaking, TCR/ICR/SICR, decrease with increase in surface width. 

The reason for this decrease can be explained by the fact that greater surface widths 

may provide more room for correction in near-accident circumstances. For example, if a 

vehicle is moving on a narrow lane, the slightest error or inattention can cause the 

vehicle to run over the edge-drop onto the shoulder. On the other hand, if the lane is 

wider, the same inattention will most likely allow the vehicle to stay on the road. In these 

near-accident circumstances, it will be difficult to separate between the effects of 

surface width, shoulder width, shoulder paving, edge-drops etc. It is likely that surface 

width plays a somewhat different role in single and multilane roads.  

2. AADT 

TCR/ICR increases up to 7000 vehicles and then decrease, while SICR remains 

constant up to 5000 vehicles and then increases. With increase in AADT, there is a 

higher chance for crashes as there are more vehicles occupying the facility. The 

severity of the crash would also be affected. For example, if the facility is completely 

saturated, then there is a higher chance for Property Damage Only (PDO) type crashes. 
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If the AADT reaches a certain threshold value for the facility, any addition beyond this 

point would most likely lower the crash rates since the movement of vehicles would be 

somewhat restricted.  

3. Percentage of Heavy Vehicles 

TCR decreases slightly with the increase in percent of heavy vehicles. On the 

other hand, ICR/SICR are statistically the same for the entire study range. Note that, 

with the increase in percentage of heavy vehicles, TCR is expected to decrease, since 

heavy vehicles constitute a large portion of the vehicle fleet. As a result, there is a 

lesser chance for speed differential, weaving and overtaking as compared to regular 

passenger cars. Beyond a certain threshold, if the percent of Heavy Vehicles increase, 

the crash rates might increase as well. In the case of this network, it seems that the 

threshold value is outside the study range, and hence this perceived behavior is not 

reflected in the trend depicted in Figure 5.2c.  

4. Speed Limit 

TCR/ICR/SICR remains unchanged with increase in speed limit. With the 

increase in speed limit there is no change in crash rates. Generally speaking, higher 

posted speed limits may lead to higher crash rates. On the other hand, these facilities, 

generally, have more lanes and better geometric configurations. The geometric 

configurations of this network are the main reason for the notable change in the (Total, 

Injury and Severe Injury) crash rates. In the sensitivity analysis, speed limits beyond 70 

mph have not been considered. Hence, the noted trends would apply for speed limits up 

to 70 mph. If speed limits are increased beyond 70 mph, then the noted trends might be 

applicable.   
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5. Median Width 

TCR/ICR remain almost constant up to 14 feet and then decrease. On the other 

hand, SICR remains almost unchanged for the entire study range. With the increase in 

median width, there is a lesser chance of opposite streams of vehicles to collide. As a 

result drivers are safer since reductions in (Total and Injury) crash rates are noted.  
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∗ The number in the parenthesis refers to total number of categorical variables  

Table 5.1: Initial Input Variables Used in the Rural Expressways MLP Network 

Node# Input Variable Type Value 

1 Section Length Miles Continuous Numerical 

2 Surface Width Continuous Numerical 

3-6 Route Class Categorical [4]∗ Binary 

7-9 Surface Type Categorical [3]∗ Binary 

10 Shoulder Width Outside Continuous Numerical 

11 Shoulder Width Inside Continuous Numerical 

12-20 Shoulder Type Outside Categorical [9]∗ Binary 

21-29 Shoulder Type Inside Categorical [9]∗ Binary 

30-35 Median Type Categorical [6]∗ Numerical 

36 Additional Surface Width Inside Continuous Numerical 

37 Additional Surface Width Outside Continuous Numerical 

38 Median Width Continuous Numerical 

39 Average Annual Daily Traffic 
(AADT) Continuous Numerical 

40 Average % of Heavy Vehicles Continuous Numerical 

41 Average Speed Limit Continuous Numerical 

42-45 Sub Section Categorical [4]∗ Binary 
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Table 5.2: ANN Maximum & Minimum Values of Input Variables Used- Rural Expressways 

Node # Input Variable 
ANN 
(Max) 

ANN 
(Min) 

1 Section Length Miles 14 0 

2 Surface Width 36 11 

3-6 Route Class 1 0 

7-9 Surface Type 1 0 

10 Shoulder Width Outside 15 0 

11 Shoulder Width Inside 15 0 

12-20 Shoulder Type Outside 1 0 

21-29 Shoulder Type Inside 1 0 

30-35 Median Type 1 0 

36 Additional Surface Width Inside 15 0 

37 Additional Surface Width Outside 15 0 

38 Median Width 100 0 

39 Average Annual Daily Traffic (AADT) 12000 200 

40 Average % of Heavy Vehicles 50 0 

41 Average Speed Limit 75 35 

42-45 Sub Section 1 0 
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∗
R2-Overall Coefficient of Determination Factor, MARE-Mean Average Relative Error, ASE-Averaged-Squared-Error 

 

 

 

 

                                            

 

Table 5.3: Results of Training using Training/Testing Datasets 
Initial Training using Training/Testing Datasets 

Start 
Node Iterations Hidden 

Nodes 
MARE-

Training∗ 
MARE-
Testing 

R2 
Training

R2 
Testing

ASE-
Training 

ASE-
Testing 

ASE-
Combined

1 300 3 497.4
23 

452.2
97 

0.870
75 

0.11
654 

0.001
148 

0.004
962 

0.0061
1 

2 800 3 491.4
06 

436.9
64 

0.969
86 

0.01
27 

0.001
947 

0.004
818 

0.0067
66 

3 800 3 493.1
4 

457.5
94 

0.815
84 

0.01
54 

0.002
202 

0.005
109 

0.0073
12 

4 1000 5 480.2
16 

443.6
55 

0.941
23 

0.01
302 

0.001
571 

0.005
047 

0.0066
18 

5 1000 6 505.7
8 

472.7
82 

0.856
11 

0.05
216 

0.001
559 

0.004
996 

0.0065
55 

6 300 7 509.5
19 

460.0
75 

0.817
7 

0.03
645 

0.002
535 

0.004
732 

0.0072
67 

7 200 8 508.4
85 

481.6
48 

0.801
82 

0.02
414 

0.002
559 

0.005
326 

0.0078
85 

8 200 9 504.9
82 

465.6
08 

0.834
9 

0.05
044 

0.002
634 

0.005
025 

0.0076
59 

9 900 9 498.1
39 

474.3
68 

0.730
64 

0.04
617 

0.002
633 

0.005
081 

0.0077
14 

10 900 10 525.0
1 

499.9
67 

0.705
03 

0.09
07 

0.003
199 

0.004
983 

0.0081
82 

Table 5.4: Results of Training using Training/Validation Datasets 
Initial Training using Training/Validation Datasets 

Start 
Node Iterations 

Hidden 
Nodes 

MARE-
Training 

MARE-
Validation

R2 
Training

R2 
Validation

ASE-
Training 

ASE-
Validation

ASE-
Combined

2 800 3 
491.4
06 

468.76
3 

0.969
86 

0.0168
2 

0.001
947 

0.0111
85 

0.0131
32 

Table 5.5: Results of Training using all datasets 
All Training 

Start Node Iterations Hidden Nodes MARE-Training R2 Training ASE- Training
2 800 3 496.656 0.57685 0.003204 
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Table 5.6: Results of Training using all variables 
Original 

Start Node Iterations Hidden Nodes MARE-Training∗ R2 Training ASE - Training 
2 800 3 496.656 0.57685 0.003204 

Variable Dropped Iterations Hidden Nodes  MARE- Training R2 Training SSEN- Training
SS 800 3 464.68 0.8111 0.001733 

Shoulder Type 
Out 800 3 489.655 0.6631 0.002054 

Shoulder Type 
In 800 3 490.321 0.47284 0.004059 

Shoulder Width 
Out 800 3 480.576 0.54737 0.003477 

Shoulder Width 
In 800 3 481.578 0.66879 0.002135 

Table 5.7: Results of Training after dropping SS 

Original-SS Dropped 
Start Node Iterations Hidden Nodes  MARE-Training R2 Training  ASE- Training 

2 800 3 464.68 0.8111 0.001733 
Variable Dropped Iterations Hidden Nodes  MARE- Training R2 Training  SSEN- Training 

Shoulder Type Out 800 3 494.951 0.64641 0.001899 
Shoulder Type In 800 3 487.925 0.30159 0.005747 

Shoulder Width Out 800 3 501.493 0.80163 0.001846 
Shoulder Width In 800 3 509.831 0.75217 0.002996 

Table 5.8: Results of Training after dropping SS and Shoulder Width Outside 

Original-SS, Shoulder Width Out Dropped 
Start Node Iterations Hidden Nodes  MARE-Training R2 Training  ASE- Training 

2 800 3 501.493 0.80163 0.001846 
Variable Dropped Iterations Hidden Nodes  MARE- Training R2 Training  SSEN- Training 

Shoulder Type Out 800 3 496.721 0.64658 0.00187 
Shoulder Type In 800 3 520.706 0.74143 0.001804 
Shoulder Width In 800 3 468.665 0.79932 0.001753 
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Original-SS, Shoulder Width Out, Shoulder Width In Dropped 

Start Node Iterations 
Hidden 
Nodes 

MARE-
Training∗ 

R2 
Training ASE- Training 

2 800 3 468.665 0.79932 0.001753 
Variable 

Dropped Iterations 
Hidden 

Nodes 
 MARE- 

Training 
R2 

Training 
 SSEN- 

Training  
Shoulder Type 

Out 800 3 495.535 0.71703 0.002765 
Shoulder Type 

In 800 3 471.824 0.70211 0.002784 
 

 

 

 

  
 

All Datasets 

Start Node Iterations Hidden Nodes  MARE-Training∗
R2 

Training   ASE- Training
1 900 3 504.892 0.70347 0.001821 
                                            

 
 
 
∗
The number in the parenthesis refers to the total number of categorical variables 

Table 5.9: Results of Training after dropping SS and Shoulder Widths Outside and Inside 

Table 5.4: Final Network Structure 

Final Structure (after variables dropped) 
Start Node Iterations Hidden Nodes MARE-Training∗ R2 Training ASE- Training 

2 800 3 468.665 0.79932 0.001753 

Table 5.5: Results of Final Training using Training/Testing Datasets 

Training/Testing Datasets 
Start 
Node Iterations Hidden 

Nodes 
MARE-

Training∗ 
MARE-
Testing 

R2 
Training

R2 
Testing

ASE-
Training 

ASE-
Testing 

ASE-
Combined

1 900 3 522.737 480.323 0.88089 0.50735 0.000197 0.004352 0.004549 

Table 5.6: Results of Final Training using Training/Validation Datasets 

Table 5.7: Final Network 

Training/Validation Datasets 
Start 
Node Iterations Hidden 

Nodes 
MARE-

Training 
MARE-

Validation
R2 

Training
R2 

Validation
ASE-

Training 
ASE-

Validation
ASE-

Combined
1 900 3 522.737 515.188 0.88089 0.24007 0.000197 0.011506 0.011703 
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Table 5.8: Final Input Variables for Rural Expressways MLP Network 

Node # Input Variable Type Value 

1 Section Length Miles Continuous Numerical 

2 Surface Width Continuous Numerical 

3-6 Route Class Categorical [4]∗ Binary 

7-10 Shoulder Type Inside Categorical [4]* Binary 

11-14 Shoulder Type Outside Categorical [4]* Binary 

15-17 Median Type Categorical [3]* Binary 

18 Median Width Continuous Numerical 

19 Average ADT Continuous Numerical 

20 Average % of Heavy Vehicles Continuous Numerical 

21 5-year Average Speed Limit Continuous Numerical 

Table 5.15: Sample Results for the Categorical Variable ranking procedure 

Rankings from Best to Worst 
Total Injury Severe Injury Fatal 

Route Class A Route Class A Route Class A Route Class B 
Route Class B Route Class C Route Class D Route Class A 
Route Class C Route Class B Route Class B Route Class C 
Route Class D Route Class D Route Class C Route Class E 
Route Class E Route Class E Route Class E Route Class D 
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Route Class Rankings (Worst to Best) 
Route Class B (CCPI = 27.6) 
Route Class C (CCPI = 15.9) 
Route Class D (CCPI = 7.9) 
Route Class E (CCPI = 3.3) 

 
Median Type Rankings (Worst to Best) 

Median Type 4: Raised Median + Turning Lanes (CCPI =24.1) 
Median Type 6: Depressed Median (CCPI = 18.8) 

Median Type 3: Barrier (CCPI = 2.7) 
 

Shoulder Type Inside Ranking (Worst to Best) 
STI(11): Bituminous Base (CCPI = 29.9) 
STI(29): P.C.C. Shoulder (CCPI = 15.0) 

STI(5): Aggregate Base Stabilized (A.B.S) (CCPI = 3.6) 
STI(19): Curb and Gutter (CCPI = 3.5) 

 
Shoulder Type Outside Ranking (Worst to Best) 

STO(11): Bituminous Base (CCPI = 39.7) 
STO(19): Curb and Gutter (CCPI = 7.5) 

STO(5): Aggregate Base Stabilized (A.B.S) (CCPI = 3.7) 
STO(29): P.C.C. Shoulder (CCPI = 2.5) 

Table 5.16: Final Overall Ranking of the Categorical Variables – Rural Expressways 

Figure 5.1: Categorical Variables Distributions- (Rural Expressway Network) 
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Figure 5.2: Continuous Variables Distributions- (Rural Expressway Network) 
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Figure 5.3:Schematic of MLP Neural Network 

 
Figure 5.4:Final Network Structure- Rural Expressways 
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Figure 5.5:Sensitivity Analysis Results of Continuous Variables – (Rural Expressway 

Network) 
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CHAPTER 6 - MODELING AND SENSITIVITY ANALYSIS 

RESULTS 

6.1  Introduction 

This chapter presents the results of modeling and sensitivity analysis for remaining 

five networks. The modeling methodology is exactly the same for all networks. 

6.3  Rural 2 Lane Network 

This is the largest network in the database. This network has a total of 5114 

datasets. Training utilized 2565 datasets, testing utilized 1282 datasets and validation 

utilized 1267datasets.  

6.3  Distribution of Variables 

The distribution of categorical and continuous variables for the rural 2 lane network 

are shown in Figures 6. and 6.  

6.3.1  Categorical Variables 

There are two types of categorical variables for the Rural 2 Lane Network. 

1. Route Class 

Figure 6.a shows the distribution plot for Route Class. Route Class D (34%) and 

Route Class E (26%) constitute the major portion of the Rural 2 Lane Network. 

Route Class C (21%) and Route Class B (19%) constitute the remaining part of the 

network. This network is the major corridor in the entire state of Kansas.  
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2. Shoulder Type Outside 

Figures 6.b shows the distribution plot for Shoulder Type Outside. There are 13 

shoulders types for this network. Turf (Shoulder Type 2), covers (40%) of the 

network. The remaining 12 types combined represent (60%) of the network. 

6.3.2  Continuous Variables 

There are five types of continuous variables.  

1. Surface Width 

Figure 6.a shows the distribution plot for Surface Width. A majority of the network 

has a surface width of 24 feet (68%). The remainder of the network has surface 

widths of ranging from 21ft to 50ft and all of them combined represent (32%) of the 

network. 

2. AADT 

Figure 6.b shows the distribution plot for AADT. The AADT range for this network 

is 0-9000 vehicles. 36% of the network sections have an AADT of (<=1000 

vehicles), 29% of the sections have AADT between 1001- 2000 vehicles and the 

remaining network (35%) has AADT between 2001 and 9000 vehicles.  

3. Heavy Vehicles 

Figure 6.c shows the distribution plot for percentage of Heavy Vehicles (%HV). The 

%HV range for this network is 0-45%. Almost half of the sections (49%) have %HV 

between 6% and 15%. The remaining sections (51%) have %HV ranging from 0 to 

5% and 16-45%. 
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4. Speed limit 

Figure 6.d depicts the distribution plot for Speed Limit. In this network, the 5-year 

average speed limits varied from 45 mph to 70 mph. The predominant speed limits 

were 55 mph (26%), 57 mph (20%) and 65 mph (21%). These three speeds cover 

67% of network and the remainder 33% have speeds ranging from 20 mph to 63 

mph. Please note that the speed limits have been averaged over a 5 year period 

and hence we may have values that are not divisible by 5. 

5. Shoulder Width Outside 

Figure 6.e shows the distribution plot for the Shoulder Width. The outside shoulder 

widths varied from 0 to 10 feet. The predominant width is 10feet, which was used 

on about 35% of network’s sections. The remaining sections (65%) had widths of 

less than 10ft. 

6.4  Training Methodology 

The training methodology is exactly the same as outlined in Chapter 5. The initial 

number of input nodes started at 46 nodes (representing the 46 input variables) and 

iterations were carried out to identify the best possible network structure. The final 

structure was obtained at 700 iterations and 6 hidden nodes. The initial input variables 

are shown in Table 6.1 and the final input variables are shown in Table 6.2.  
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Figure 6. shows the structure of the final MLP neural network model and 

Equation 6.1 gives the structure of the final model. 

1, 2 3 4 23-6-4 1 2 3 4 23 (Y  Y , Y , Y )  ANN (X , X , X , X  X )= …  Equation 6.1 

Where: 

1

2

3

4

Y  Severe Injury Crash Rate, 
Y   Injury Crash Rate, 

Outputs
Y   Fatal Crash Rate, and 
Y   Total Crash Rate

=⎧ ⎫
⎪ ⎪=⎪ ⎪= ⎨ ⎬=⎪ ⎪
⎪ ⎪=⎩ ⎭
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7
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22

23

X Section Length, 
X   Surface Width, 
X  - X   Route Class,
X   Shoulder Width Outside

Inputs
X  - X   Shoulder Type Outside,
X   Average ADT,
X   Average Percentage of Heavy Vehicles,
X   Avera

=

=

=

=
=

=

=

=

= ge Speed Limit

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

 

23-3-4 represents 23 Inputs, 6 Hidden Nodes, and 4 Outputs. The R2 values for the 

model and the individual crash rates are: R2 (Model) = 0.4655, R2 (SICR) = 0.8647, R2 

(ICR) = 0.0456, R2 (FCR) = 0.7791, R2 (TCR) = 0.1728 

6.5  Sensitivity Analysis 

After the final structure is obtained, sensitivity analysis was performed on the input 

variables in the final model. The results for categorical variables are shown in Table 6.3. 

The results for continuous variable are shown in Figure 6.4 a-e. 
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6.5.1  Sensitivity of Categorical Variables 

The overall rankings reported herein for Rural 2 Lane network are based on the 

CCPI values listed in Table 6.3. 

1. Route Class 

From crash potential point of view, Route Classes E and D are worst, Route Class 

C is moderate and Route Class B is best. The crash rates are expected to be 

higher on Route Class E and least on Route Class B. This observation is 

consistent with the KDOT classification of the Kansas 2-lane routes.  

2. Shoulder Type Outside 

Based on the calculated CCPI values for this case, Shoulder types: Aggregate 

Base Stabilized (A.B.S) and Gutter, and Calcium Chloride with Limestone are 

expected to be associated with the highest overall crash rates. On the other hand, 

Shoulders having One Feet Bitumen with Remainder Turf are expected to be 

associated with the least overall crash rates.  

6.5.2  Sensitivity of Continuous Variables 

Graphical results (trends) of the associated sensitivity analysis are presented in 

Figure 6.4 a-e. 

1. Surface Width 

TCR decreases with increase in surface width up to 26 feet. Further increase in 

surface width slightly increases TCR. ICR/SICR, decrease with increase in surface 

width. This network has only one travel lane in each direction. Greater surface 

widths would separate opposite streams of traffic and would reduce the likelihood 
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of head on collisions. Beyond a certain point, the extra widths would give room for 

overtaking and speeding, which again might lead to an increase in crash rates. 

2. AADT 

TCR remains unchanged with increase in AADT up to 5000 vehicles and then 

increases. ICR/SICR remain statistically the same for the entire study range.  

3. Percentage of Heavy Vehicles 

TCR sharply decreases with increase in % heavy vehicles up to 30%. Beyond this 

point, TCR is remains unchanged. On the other hand, ICR/SICR remains 

statistically the same for the entire study range. The results are consistent with 

general behavior. 

4. Speed Limit 

TCR decreases with increase in speed limit. ICR/SICR remains unchanged with 

increase in speed limit. The maximum speed limit for this network is 65 mph. The 

observed trends hold good up to 65 mph. Beyond this speed, the crashes might go 

up. The trend is in conformance with the literature review. 

5. Shoulder Width 

In this case, TCR/ICR/SICR shows a decreasing trend with increase in shoulder 

width up to 6 feet and then start increasing. Providing additional shoulder widths 

beyond 6ft might be providing a false sense of security to the drivers thereby 

leading to an increase in crash rates. s the drivers with a false since of security. 

6.6  Rural Freeways Network 

This network has a total of 349 datasets. Training utilized 178 datasets, testing 

utilized 86 datasets and validation utilized 85 datasets.  
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6.7  Distribution of Variables 

The distributions of categorical and continuous variables for the Rural Freeways 

network are shown in Figures 6.5 and 6..  

6.7.1  Categorical Variables 

There are three types of categorical variables for the Rural Freeways Network. 

1. Route Class 

Figure 6.5a shows the distribution plot for Route Class. Route Class A (82%) 

constitutes the major portion of the Rural Freeway Network. Route Class B (11%) 

and Route Class C (19%) constitute the remaining part of the network.  

2. Median Type 

Figure 6.5b shows the distribution plot for Median Type. Depressed Median 

(Median Type 6) constitutes the major portion (82%) of the network and Barrier 

(Median Type 8) covers the remaining (18%).  

3. Shoulder Type Outside 

Figure 6.5c shows the distribution plot for Shoulder Type Inside. Bituminous Base 

(Shoulder Type 11) constitutes the major portion (69%) of the network. P.C.C 

Shoulder (Shoulder Type 29) and Asphaltic Concrete Shoulder (Shoulder Type 30) 

cover the remaining (31%). 
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6.7.2  Continuous Variables 

There are four types of continuous variables.  

1. Median Width 

Figure 6.a shows the distribution plot for Median Width. The median width’s range 

for this network is from 10ft-30ft. The predominant median width is 30 feet, which 

was used on about (80%) of the sections and the remaining sections have widths 

ranging from 10ft-27ft. 

2. Heavy Vehicles 

Figure 6.b shows the distribution plot for percentage of Heavy Vehicles (%HV). 

66% of the sections have %HV between 16% and 30%. Of this 66%, 24% of 

sections have %HV between 26 and 30, 23% of sections have %HV between 16 

and 20, and 19% of sections have %HV between 16 and 20. The remaining 

sections have %HV ranging from 0 to 15 and 36 to 40. 

3. AADT 

Figure 6.c shows the distribution plot for AADT. The AADT range for this network is 

0-15700 vehicles. 59% of the network sections have an AADT of (<=5000 

vehicles), 39% of them have AADT between 5000 and 10000 vehicles and the 

remaining 2% of them have AADT greater than 10000 and 15700 vehicles.  

4. Speed limit 

Figure 6.d shows the distribution plot for Speed Limit. In this network, the 5-year 

average speed limits varied from 58 mph to 70 mph. The predominant speed limits 

were 66 mph (42%) and 70 mph (48%). The remaining (10%) sections have 

speeds ranging from 58 mph to 65 mph. Please note that the speed limits have 
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been averaged over a 5 year period and hence we may have values that are not 

divisible by 5. 

6.8 Training Methodology 

The initial number of input nodes started at 25 nodes (representing the 25 input 

variables) and iterations were carried out to identify the best possible network structure. 

The final structure was obtained at 200 iterations and 5 hidden nodes. The initial input 

variables are shown in Table 6.4 and the final input variables are shown in Table 6.5. 

Figure 6. shows the structure of the final MLP neural network model and 

Equation 6.2 gives the structure of the final model. 

1, 2 3 4 13-5-4 1 2 3 4 13 (Y  Y , Y , Y )  ANN (X , X , X , X  X )= …  Equation 6.2 

Where: 
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4

Y  Severe Injury Crash Rate, 
Y   Injury Crash Rate, 

Outputs
Y   Fatal Crash Rate, and 
Y   Total Crash Rate
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13-5-4 represents 13 Inputs, 5 Hidden Nodes, and 4 Outputs. The R2 values for 

the model and the individual crash rates are: R2 (Model) = 0.2803, R2 (SICR) = 0.5074, R2 

(ICR) = 0.3048, R2 (FCR) = 0.0426, R2 (TCR) = 0.2664 
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6.9  Sensitivity Analysis 

After the final structure is obtained, sensitivity analysis was performed on the input 

variables in the final model and Table 6. gives the results for categorical variables. The 

results for continuous variable are shown in Figure 6. a-d. 

6.9.1  Discussion- Sensitivity of Categorical Variables 

The ranking reported herein are based on the CCPI values listed in Table 6.6.  

1. Route Class 

From crash potential point of view, Route Classes A is worst, Route Class C is 

moderate and Route Class B is best. The crash rates are expected to be higher on 

Route Class A and least on Route Class B.  

2. Median Type 

From crash potential point of view, Depressed Median (Median Type 8) is the 

worst, and Barrier (Median Type 6) is the best.  

3. Shoulder Type Outside 

Based on the calculated CCPI values for this case, Bituminous Base shoulder is 

expected to be associated with the highest overall crash rates, Asphaltic Concrete 

Shoulder is expected to be associated with moderate crash rates and P.C.C 

Shoulder is expected to be associated with the least overall crash rates.  

6.9.2  Discussion- Sensitivity of Continuous Variables  

1. AADT 

TCR increases up to AADT value of 10000 and then decreases beyond this point. 

ICR remains constant up to 10000 and then decreases slightly. SICR remains 
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statistically the same for the entire study range. The findings are consistent with 

the literature. 

2. Percentage of Heavy Vehicles 

TCR remains constant up to 25% and then decreases slightly. On the other hand, 

ICR/SICR are statistically the same for the entire study range. The findings are 

consistent with other networks.  

3. Speed Limit 

TCR remains constant up to 63mph and then increases slightly. ICR/SICR are 

statistically the same for the entire study range. The findings are consistent with 

the literature. 

6.10  Rural KTA Network 

This is the smallest network in the database. It has a total of 65 datasets. Training 

utilized 37 datasets, testing utilized 14 datasets and validation utilized 14 datasets.  

6.11  Distribution of Variables 

The distribution of categorical and continuous variables for the Rural KTA Network 

is shown in Figures 6. and 6.. 

6.11.1  Categorical Variables 

There is only one categorical variable for this network. 

Sub-Section (SS) 

Figures 6. shows the distribution plot for Sub-Section. SS-I is the most 

predominant subsection type and covers 76% of the network. SS-II and SS-III 

cover the remaining 24%. There are no details provided by KDOT about the Sub-

Section types and the use of each type.  
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6.11.2  Continuous Variables 

There are three types of continuous variables.  

1. Heavy Vehicles 

Figure 6.a shows the distribution plot for percentage of Heavy Vehicles (%HV).The 

percentage of HV for this network varied from 14-27. 20% of the sections have 

18%HV and 17% of sections have 20%HV. The remaining sections (63%) have 

%HV ranging from 14 to 27%.  

2. AADT 

Figure 6.0b shows the distribution plot for AADT. The AADT range for this network 

is 0-12000 vehicles. 23% of sections have AADT between 2000 and 3000 vehicles, 

22% of sections have AADT between 5000 and 6000 vehicles and 19% of sections 

have AADT between 4000 and 5000 vehicles. The remaining sections (36%) have 

AADT between 2000 and 12000 vehicles. 

3. Speed limit 

Figure 6.c shows the distribution plot for Speed Limit. There are only two speed 

limits (66 mph and 70 mph) for this network and each cover 50% of the network. 

Please note that the speed limits have been averaged over a 5 year period and 

hence we may have values that are not divisible by 5. 

6.12  Training Methodology 

The initial number of input nodes started at 17 nodes (representing the 17 input 

variables) and iterations were carried out to identify the best possible network structure. 

The final structure was obtained at 600 iterations and 3 hidden nodes. The initial input 

variables are shown in Table 6. and the final input variables are shown in Table 6.. 



 

 
 

77

Figure 6. shows the structure of the final MLP neural network model and 

Equation 6.3 gives the structure of the final model. 

1, 2 3 4 7-3-4 1 2 3 4 7 (Y  Y , Y , Y )  ANN (X , X , X , X  X )= …  Equation 6.3 

Where  

1

2

3

4

Y  Severe Injury Crash Rate, 
Y   Injury Crash Rate, 

Outputs
Y   Fatal Crash Rate, and 
Y   Total Crash Rate
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7-3-4 represents 7 Inputs, 3 Hidden Nodes, 4 Outputs. The R2 values for the model 

and the individual crash rates are: R2 (Model) = 0.1201, R2 (SICR) = 0.1458, R2 (ICR) = 

0.0693, R2 (FCR) = 0.0598, R2 (TCR) = 0.2057 

6.13  Sensitivity Analysis 

After the final structure is obtained, sensitivity analysis was performed on the input 

variables in the final model and Table 6. gives the results for categorical variables. 

Figure 6. a-c shows the results for continuous variables  
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6.13.1  Discussion- Sensitivity of Categorical Variables 

The ranking reported herein are based on the CCPI values listed in Table 6. 

SS (Sub-Section) 

From crash potential point of view, SS-II is worst, SS-I is moderate and SS-III is 

best. SS refers to subsection and each network is divide into sub-sections based 

on the section geometric characteristics. It is clearly not stated in the KARS 

manual about the characteristics of each type and hence only the order of the sub-

sections in terms of expected crash rates is given. 

6.13.2  Discussion- Sensitivity of Continuous Variables  

1. Percentage of Heavy Vehicles 

TCR remains constant up to 20% HV and then has a steep decrease. On the other 

hand, ICR/SICR remain statistically unchanged for the entire study range. The 

findings are consistent with other networks. 

2. AADT 

TCR decreases slightly up to AADT value of 10000 and increases slightly. 

ICR/SICR remain statistically unchanged for the entire study range. The results are 

different from other networks. One reason for the difference in behavior can be 

attributed to the study volume range.  

3. Speed Limit 

TCR/ICR/SICR, are statistically the same for the entire study range. The results 

are slightly different, compared to other networks. It is to be noted that Turnpike 

roads are slightly different compared to other roads. The maintenance and 

operation of these networks are done by a separate authority when compared to 
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the regular road networks. The slightly different behavior of the traffic variables on 

this network may be attributed to this fact. 

6.14  Urban Freeways Network 

This is the largest urban network and had a total of 435 datasets. Training utilized 

220 datasets, testing utilized 108 datasets and validation utilized 107 datasets.  

6.15  Distribution of Variables 

The distribution of categorical and continuous variables for the Rural Freeways 

network is shown in Figures 6.13 and 6.4.  

6.15.1  Categorical Variables 

There are three types of categorical variables for the Urban Freeways Network. 

1. Route Class 

Figure 6.13a shows the distribution plot for Route Class. Route Class A (75%) 

constitutes the major portion of the network followed by Route Class B (15%), 

Route Class C (8%), Route Class D (1%) and Route Class E (1%). 

2. Median Type 

Figure 6.b shows the distribution plot for Median Type. Depressed Median (Median 

Type 6) (55%) constitutes the major portion of the network, Barrier (Median Type 

8) covers (42%) and Raised Median with Curbs (Median Type 3) covers (3%).  

3. Shoulder Type Outside 

Figure 6.c shows the distribution plot for Shoulder Type Outside. P.C.C. Shoulder 

(Shoulder Type 29) (49%) constitutes the major portion of the network followed by 

Bituminous Base (Shoulder Type 11) (32%), Asphaltic Concrete Shoulder 

(Shoulder Type 30) (11%) and Curb and Gutter (Shoulder Type 19) (8%). 
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6.15.2  Continuous Variables  

There are six types of continuous variables for the Urban Freeways Network. 

1. Surface Width 

Figure 6.a shows the distribution plot for Surface Width. The predominant surface 

width is 24 feet, which covers (55%) of the network. The remainder of the network 

has surface widths ranging from 26ft to 51 ft. 

2. Shoulder Width Inside 

Figure 6.b shows the distribution plot for the Shoulder Width Inside. The inside 

shoulder widths varied from 0-10ft. The most predominant width is 6ft, which was 

used on (50%) of the network’s sections and the other widths cover the remaining 

50% of sections. 

3. Median Width 

Figure 6.c shows the distribution plot for the Median Width. For this network the 

median widths varied from 8ft-55ft. The most predominant median width is 30ft and 

covers (58%) of the network’s sections while other widths cover the remaining 

(42%) of sections. 

4. AADT 

Figure 6.d shows the distribution plot for AADT. The AADT range for this network 

is from 0 to 60000 vehicles. The most predominant AADT is between 5000 and 

10000 vehicles and covers (24%) of the network.  

 

5. Heavy Vehicles 
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Figure 6.e shows the distribution plot for percentage of Heavy Vehicles (%HV). 

45% of the sections have %HV between 6% and 10%. The remaining sections 

have %HV ranging from 0-35%. 

6. Speed limit 

Figure 6.f depicts the distribution plot for Speed Limit. In this network, the 5-year 

average speed limits varied from 55mph to 70mph. The predominant speed limits 

were 55 mph (16%), 57mph (14%), 65mph (15%) and 70mph (17%). Please note 

that the speed limits have been averaged over a 5 year period and hence we may 

have values that are not divisible by 5. 

6.16  Training Methodology 

 The initial number of input nodes started at 30 nodes (representing the 30 input 

variables) and iterations were carried out to identify the best possible network structure. 

The final structure was obtained at 700 iterations and 5 hidden nodes. The initial input 

variables are shown in Table 6. and the final input variables are shown in Table 6.. 
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Figure 6. shows the structure of the final MLP neural network model and 

Equation 6.4 gives the structure of the final model. 

1, 2 3 4 19-5-4 1 2 3 4 19 (Y  Y , Y , Y )  ANN (X , X , X , X  X )= …  Equation 6.4 

Where: 
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4

Y  Severe Injury Crash Rate, 
Y   Injury Crash Rate, 

Outputs
Y   Fatal Crash Rate, and 
Y   Total Crash Rate
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19-5-4 represents 19 Inputs, 5 Hidden Nodes, 4 Outputs. The R2 values for the 

model and the individual crash rates are:R2 (Model) = 0.2766, R2 (SICR) = 0.1007, R2 

(ICR) = 0.2648, R2 (FCR) = 0.3310, R2 (TCR) = 0.4101. 

6.17  Sensitivity Analysis 

After the final structure is obtained, sensitivity analysis was performed on the input 

variables in the final model and Table 6. gives the results for categorical variables. The 

results for continuous variable are shown in Figure 6. a-f. 
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6.17.1  Discussion- Sensitivity of Categorical Variables 

The ranking reported herein are based on the CCPI values listed in Table 6.. 

1. Route Class 

From crash potential point of view, Route Classes E and C are worst, Route Class 

A is moderate and Route Classes D and B are best. The crash rates are expected 

to be higher on Route Classes E and C, moderate on Route Class A and low on 

Route Classes D and B.  

2. Median Type 

From crash potential point of view, Depressed Median (Median Type 8) is the 

worst, Barrier (Median Type 6) is moderate and Raised Median with Curbs is the 

best. The findings are slightly different from literature.  

3. Shoulder Type Outside 

Based on the calculated CCPI values for this case, Bituminous Base and Asphaltic 

Concrete Shoulders are expected to be associated with the highest overall crash 

rates, P.C.C Shoulder is expected to be associated with moderate crash rates and 

Curb and Gutter Shoulder is expected to be associated with the least overall crash 

rates. 

6.17.2  Discussion- Sensitivity of Continuous Variables  

1. Surface Width 

TCR/ICR decrease with increase in surface width up to 36ft and then increase. The 

addition of surface width beyond 36ft would give in extra room for drivers to 

overtake and speed and could be the reason for increase in crash rates.  
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2. Shoulder Width Inside 

TCR/ICR decrease with increase in inside shoulder width up to 5ft and then 

increase. Beyond 5 feet if the inside shoulder width is increased the extra room 

would almost serve as an extra lane and drivers might use that extra width for 

overtaking maneuvers which in turn might increase the crash rates.  

3. Median Width 

TCR/ICR remains almost constant up to 28 feet and then increase.  

4. AADT 

TCR/ICR steeply decrease with increase in AADT. The results are consistent with 

literature. 

5. Percentage of Heavy Vehicles 

TCR increases slightly up to 20% and then decreases slightly. On the other hand, 

ICR is fairly constant for the entire study range. The findings are slightly different 

from the literature.  

6. Speed Limit 

TCR increases slightly up to 63mph and then decreases. ICR remains statistically 

same for the entire study range. The findings are slightly different from the 

literature.  

It is to be noted that in all cases considered herein, FCR’s have very limited 

datasets and therefore it is difficult to generalize their behavior.  
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6.18  Urban Expressways 

This network has a total of 80 datasets. Training utilized 46 datasets, testing 

utilized 17 datasets and validation utilized 17 datasets.  

6.19  Distribution of Variables 

The distribution of categorical and continuous variables for the Urban Freeways 

network is shown in Figures 6.17 and 6.18. 

6.19.1  Categorical Variables 

There are two types of categorical variables for the Urban Freeways Network. 

1. Route Class 

Figure 6.17a shows the distribution plot for Route Class. Route Class C (48%) 

constitutes the major portion of the network followed by Route Class B (40%), 

Route Class D (8%) and Route Class E (4%). 

2. Median Type 

Figure 6.b shows the distribution plot for Median Type. Depressed Median (Median 

Type 6) (64%) constitutes the major portion of the network, Raised Median with 

Turning Lanes (Median Type 4) covers (30%) and Raised Median with Curbs 

(Median Type 3) covers (6%).  

6.19.2  Continuous Variables  

There are six types of continuous variables for the Urban Freeways Network. 

1. Surface Width 

Figure 6.a shows the distribution plot for Surface Width. The most predominant 

surface width for this network is 24 feet, which was used on (98%) of the network’s 

sections. The remaining 2% sections have a surface width of 26ft. 
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2. Shoulder Width Outside 

Figure 6.b shows the distribution plot for the Shoulder Width Outside. Almost the 

entire network (99%) has outside shoulder width of 10 feet. The remaining 1% of 

the network has no outside shoulder widths. 

3. Median Width 

Figure 6.c shows the distribution plot for the Median Width. For this network the 

median widths varied from 2ft-30ft. The predominant widths are 18 ft (20%), 17ft 

(13%), and 10ft (13%). Other widths cover the remaining (54%) of the network 

sections. 

4. AADT 

Figure 6.d shows the distribution plot for AADT. The AADT range for this network 

is from 0 to 20000 vehicles. The most predominant AADT ranges are 0 to 5000 

vehicles (43%) and 6000 to 10000 vehicles (41%). The remaining sections (16%) 

have AADT between 10000 and 20000. 

5. Heavy Vehicles 

Figure 6.e shows the distribution plot for percentage of Heavy Vehicles (%HV). 

45% of the sections have %HV between 6% and 10%. The remaining sections 

have %HV ranging from 0-35%. 

6. Speed limit 

Figure 6.f shows the distribution plot for Speed Limit. In this network, the 5-year 

average speed limits varied from 45 mph to 60 mph. The most predominant speed 

limit is 55 mph (60%). Please note that the speed limits have been averaged over 

a 5 year period and hence we may have values that are not divisible by 5. 
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6.20  Training Methodology 

 The initial number of input nodes started at 29 nodes (representing the 29 input 

variables) and iterations were carried out to identify the best possible network structure. 

The final structure was obtained at 1000 iterations and 4 hidden nodes. The initial input 

variables are shown in Table 6. and the final input variables are shown in Table 6. 

Figure 6. shows the structure of the final MLP neural network model and 

Equation 6.5 gives the structure of the final model. 

1, 2 3 4 14-4-4 1 2 3 4 14 (Y  Y , Y , Y )  ANN (X , X , X , X  X )= …  Equation 6.5 

Where: 
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Y  Severe Injury Crash Rate, 
Y   Injury Crash Rate, 
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Y   Fatal Crash Rate, and 
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14-4-4 represents 14 Inputs, 4 Hidden Nodes, 4 Outputs. The R2 values for the 

model and the individual crash rates are: R2 (Model) = 0.6806, R2 (SICR) = 0.8245, R2 

(ICR) = 0.9190, R2 (FCR) = 0.0655, R2 (TCR) = 0.9136 
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6.21  Sensitivity Analysis 

After the final structure is obtained, sensitivity analysis was performed on the input 

variables in the final model and Table 6. gives the results for categorical variables. The 

results for continuous variable are shown in Figure 6. a-f. 

6.21.1  Discussion- Sensitivity of Categorical Variables 

The ranking reported herein are based on the CCPI values listed in Table 6.. 

1. Route Class 

From crash potential point of view, Route Class B is worst, Route Class C is 

moderate and Route Classes D and E are best. The crash rates are expected to 

be higher on Route Class B, moderate on Route Class C and low on Route 

Classes D and E. 

2. Median Type 

From crash potential point of view, Barrier (Median Type 6) is the worst, Raised 

Median with Curbs (Medina Type 3) is moderate and Depressed Median (Median 

Type 8) is the best. The findings are not consistent with literature.  

6.21.2  Discussion- Sensitivity of Continuous Variables  

1. Surface Width 

TCR/ICR decreases steeply with increase in AADT. SICR remains statistically 

unchanged for the entire study range. 

2. Shoulder Width Outside 

TCR decreases steeply with increase in shoulder width outside. ICR/SICR also 

decrease with increase in shoulder width, but the decrease is not as steep as TCR.  

3. Median Width 
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TCR decreases steeply up to 20 feet and then starts increasing. ICR/SICR 

decrease up to 20 feet and then remain unchanged after that. The results are 

consistent with other networks. 

4. AADT 

TCR/ICR increases up to 10000 vehicles and then decrease. The findings are not 

consistent with literature  

5. Percentage of Heavy Vehicles 

TCR/ICR increase with increase in heavy vehicles up to 12% and then decrease. 

SICR remains statistically same for the entire study range. The findings are not 

consistent with literature. 

6. Speed Limit 

TCR/ICR increase with increase in speed limit up to 56mph and then decrease. 

SICR remains statistically same for the entire study range. The findings are not 

consistent with literature. 

It is to be noted that in all cases considered herein, FCR’s have very limited 

datasets and therefore it is difficult to generalize their behavior.  

6.22  Conclusions 

The models developed for all the networks are quiet different from each other. This 

tells us that each network behaves differently and the crash rate patterns are not the 

same throughout. The sensitivity analysis for each network provides information about 

how each variable in the model influences the crash rates. This in turn may provide 

engineers with a preliminary idea of the variables to control/alter in case of problematic 
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situations. Also, the crash prediction models would be very helpful in future planning 

operations and when undertaking any major reconstruction works.  

 

 

                                            

∗ Number in parenthesis refers to the No. of categorical variables  

Table 6.1: Initial Input Variables-Rural 2 Lane Network 
Node # Input Variable Type Value 

1 Section Length Miles Continuous Numerical 
2 Surface Width Continuous Numerical 

3-6 Route Class Categorical [4]∗ Binary 
7-9 Surface Type Categorical [3]* Binary 
10 Shoulder Width Outside Continuous Numerical 
11 Shoulder Width Inside Continuous Numerical 

12-24 Shoulder Type Outside Categorical [13]* Binary 
25-37 Shoulder Type Inside Categorical [13]* Binary 

38 Additional Surface Width Inside Continuous Numerical 
39 Additional Surface Width Outside Continuous Numerical 
40 Average ADT Continuous Numerical 
41 Average % of Heavy Vehicles Continuous Numerical 
42 Average Speed Limit Continuous Numerical 

43-46 Sub Section Categorical [4]* Binary 

Table 6.2: Final Input Variables-Rural 2 Lane Network 
Node # Input Variable Type Value 

1 Section Length Miles Continuous Numerical 
2 Surface Width Continuous Numerical 

3-6 Route Class Categorical [4]* Binary 
7 Shoulder Width Outside Continuous Numerical 

8-20 Shoulder Type Outside Categorical Binary 
21 Average ADT Continuous Numerical 
22 Average % of Heavy Vehicles Continuous Numerical 
23 Average Speed Limit Continuous Numerical 
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∗ Number in parenthesis refers to the number of categorical variables included 

Route Class Rankings (Worst to Best) 
 Route Class E (CCPI = 4.5) 
 Route Class D (CCPI = 4.2) 
Route Class C (CCPI = 3.2) 
Route Class B (CCPI = 2.8) 
Shoulder Type Outside Ranking (Worst to Best) 
Aggregate Base Stabilized (A.B.S) and Gutter (CCPI = 5) 
Calcium Chloride with Limestone (CCPI = 4.8)  
Three Feet Bitumen + Remainder Turf (CCPI = 4.6)  
A.B.S (Wedge) + Remainder Turf (CCPI = 4.6)  
P.C.C. Shoulder (CCPI = 4.3)  
Two Feet Bitumen + Remainder Turf (CCPI = 4.1) 
B.B and C/G (CCPI = 4.13)  
Turf (CCPI = 4.04)  
Aggregate 1” with CaCl2 (3R), LT 6“ (CCPI = 3.92)  
Three Feet Bitumen + Remainder Aggregate (CCPI = 3.87)  
Two Feet Bitumen + Remainder Aggregate (CCPI = 3.78) 
Four Feet Bitumen + Remainder Turf (CCPI = 3.79) 
One Foot Bitumen + Remainder Turf (CCPI = 3.38)  

Table 6.3: Ranking of Categorical Variables- Rural 2 Lane 

Node # Input Variable Type Value 
1 Section Length Miles Continuous Numerical 
2 Surface Width Continuous Numerical 

3-5 Route Class Categorical [3]∗ Binary 
6-8 Surface Type Categorical [3]* Binary 
9 Shoulder Width Outside Continuous Numerical 
10 Shoulder Width Inside Continuous Numerical 

11-13 Shoulder Type Outside Categorical [3]* Binary 
14-16 Shoulder Type Inside Categorical [3]* Binary 

17 Additional Surface Width Inside Continuous Numerical 
18 Additional Surface Width Outside Continuous Numerical 
19 Average ADT Continuous Numerical 
20 Average % of Heavy Vehicles Continuous Numerical 
21 Average Speed Limit Continuous Numerical 

22-25 Sub Section Categorical [4]* Binary 

Table 6.4: Initial Input Variables Used in the Rural Freeways MLP Network 
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Node # Input Variable Type Value 
1 Section Length Miles Continuous Numerical 

2-4 Route Class Categorical [3]* Binary 
5-7 Shoulder Type Inside Categorical [3]* Binary 
8-9 Median Type Categorical [2]* Binary 
10 Median Width Continuous Numerical 
11 Average ADT Continuous Numerical 
12 Average % of Heavy Vehicles Continuous Numerical 
13 Average Speed Limit Continuous Numerical 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6.5: Final Input Variables Used in the Rural Freeways MLP Network 

Table 6.6: Ranking of Categorical Variables- Rural Freeways 
Route Class Rankings (Worst to Best) 

Route Class A (CCPI = 3.5224) 
Route Class C (CCPI = 3.3255) 
Route Class B (CCPI = 3.1635) 

 
Median Type Rankings (Worst to Best) 

Depressed Median (CCPI=4.033) 
Barrier (CCPI=3.282) 

 
Shoulder Type Outside Ranking (Worst to Best) 

Bituminous Base (CCPI = 4.033) 
Asphaltic Concrete Shoulder (CCPI = 3.296) 

P.C.C. Shoulder (CCPI = 3.469) 
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Node # Input Variable Type Value 
1 Section Length Miles Continuous Numerical 
2 Surface Width Continuous Numerical 
3 Route Class Categorical [1]∗ Binary 
4 Shoulder Width Outside Continuous Numerical 
5 Shoulder Width Inside Continuous Numerical 
6 Shoulder Type Outside Categorical [1]* Binary 
7 Shoulder Type Inside Categorical [1]* Binary 
8 Additional Surface Width Inside Continuous Numerical 
9 Additional Surface Width Outside Continuous Numerical 

10 Median Type Categorical [1]* Binary 
11 Median Width Continuous Numerical 
12 Average ADT Continuous Numerical 
13 Average % of Heavy Vehicles Continuous Numerical 
14 Average Speed Limit Continuous Numerical 

15-17 Sub Section Categorical [3]* Binary 
 

Node # Input Variable Type Value 
1 Section Length Miles Continuous Numerical 

2-4 Sub Section Categorical [3]∗ Binary 
5 Average ADT Continuous Numerical 
6 Average % of Heavy Vehicles Continuous Numerical 
7 Average Speed Limit Continuous Numerical 

 
 
 
 
 

                                            

∗ Number in parenthesis refers to the number of categorical variables included 
∗ Number in parenthesis refers to the number of categorical variables included 

Table 6.7: Initial Input Variables Used in the Rural KTA Network 

Table 6.8: Final Input Variables Used in the Rural KTA Network 

Table 6.9: Ranking of Categorical Variables- Rural KTA Network 
SS Rankings (Worst to Best) 

SS (2) (CCPI = 4.329) 
SS (1) (CCPI = 4.165) 
SS (3) (CCPI = 4.050) 
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Node # Input Variable Type Value 
1 Section Length Miles Continuous Numerical 
2 Surface Width Continuous Numerical 

3-7 Route Class Categorical [5]∗ Binary 
8 Shoulder Width Outside Continuous Numerical 
9 Shoulder Width Inside Continuous Numerical 

10-13 Shoulder Type Outside Categorical [4]* Binary 
14-17 Shoulder Type Inside Categorical [4]* Binary 

18 Additional Surface Width Inside Continuous Numerical 
19 Additional Surface Width Outside Continuous Numerical 

20-22 Median Type Categorical [3]* Binary 
23 Median Width Continuous Numerical 
24 Average ADT Continuous Numerical 
25 Average % of Heavy Vehicles Continuous Numerical 
26 Average Speed Limit Continuous Numerical 

27-30 Sub Section Categorical [4]* Binary 
 

 
 
 
 
 

                                            

 
∗ Number in parenthesis refers to the number of categorical variables included 

Table 6.10: Initial Input Variables Used in the Urban Freeways MLP Network 

Table 6.11: Final Input Variables Used in the Urban Freeways MLP Network 
Node # Input Variable Type Value 

1 Section Length Miles Continuous Numerical 
2 Surface Width Continuous Numerical 

3-7 Route Class Categorical [5]∗ Binary 
8 Shoulder Width Inside Continuous Numerical 

9-12 Shoulder Type Outside Categorical [4]* Binary 
13-15 Median Type Categorical [3]* Binary 

16 Median Width Continuous Numerical 
17 Average ADT Continuous Numerical 
18 Average % of Heavy Vehicles Continuous Numerical 
19 Average Speed Limit Continuous Numerical 
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Node # Input Variable Type Value 
1 Section Length Miles Continuous Numerical 
2 Surface Width Continuous Numerical 

3-6 Route Class Categorical [4]∗ Binary 
7 Shoulder Width Outside Continuous Numerical 
8 Shoulder Width Inside Continuous Numerical 

19-12 Shoulder Type Outside Categorical [4]* Binary 
13-16 Shoulder Type Inside Categorical [4]* Binary 

17 Additional Surface Width Inside Continuous Numerical 
18 Additional Surface Width Outside Continuous Numerical 

19-21 Median Type Categorical [3]* Binary 
22 Median Width Continuous Numerical 
23 Average ADT Continuous Numerical 
24 Average % of Heavy Vehicles Continuous Numerical 
25 Average Speed Limit Continuous Numerical 

26-29 Sub Section Categorical [4]* Binary 
 

                                            

∗ Number in parenthesis refers to the number of categorical variables  

Table 6.12: Ranking of Categorical Variables- Urban Freeways 
Route Class Rankings (Worst to Best) 

Route Class E (CCPI = 51.1) 
Route Class C (CCPI = 39.3) 
Route Class A (CCPI = 25.7) 
Route Class D (CCPI = 4.47) 
Route Class B (CCPI = 3.47) 

 
Median Type Rankings (Worst to Best) 

Depressed Median (CCPI=28.26) 
Barrier (CCPI=14.87) 

Raised Median With Curbs (CCPI=2.86) 
 

Shoulder Type Outside Ranking (Worst to Best) 
Bituminous Base (CCPI = 38.70) 

Asphaltic Concrete Shoulder (CCPI = 34.07) 
P.C.C. Shoulder (CCPI = 10.91) 

Curb and Gutter (CCPI=4.6) 

Table 6.13: Initial Input Variables Used in the Urban Expressways MLP Network 
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Node # Input Variable Type Value 
1 Section Length Miles Continuous Numerical 
2 Surface Width Continuous Numerical 

3-6 Route Class Categorical [4]∗ Binary 
7 Shoulder Width Outside Continuous Numerical 

8-10 Median Type Categorical [3]* Binary 
11 Median Width Continuous Numerical 
12 Average ADT Continuous Numerical 
13 Average % of Heavy Vehicles Continuous Numerical 
14 Average Speed Limit Continuous Numerical 

 

 

  
 
 
 
 
 
 
 
 
 
 

                                            

  

Table 6.14: Final Input Variables Used in the Urban Expressways MLP Network 

Table 6.15: Ranking of Categorical Variables- Urban Expressways 
Route Class Rankings (Worst to Best) 

Route Class B (CCPI = 38.985) 
Route Class C (CCPI = 11.815) 
Route Class D (CCPI = 5.376) 
Route Class E (CCPI = 5.061) 

 
Median Type Rankings (Worst to Best) 

Barrier (CCPI=26.004) 
Raised Median With Curbs (CCPI=15.124) 

Depressed Median (CCPI=11.856) 
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Figure 6.1: Categorical Variables Distribution-Rural 2 Lane Network 
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Figure 6.2: Continuous Variables Distribution-Rural 2 Lane Network 
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Figure 6.3: Final Network Structure-Rural 2 Lane 

Figure 6.4: Sensitivity of Continuous Variables –I (Rural 2 Lane Network) 
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Figure 6.5: Categorical Variables Distribution-Rural Freeways Network 

 

Figure 6.6: Continuous Variables Distribution-Rural Freeways Network 
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Figure 6.7: Final Network Structure- Rural Freeways 

Figure 6.8: Sensitivity of Continuous Variables – (Rural Freeway Network) 
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Figure 6.9: Categorical Variables Distribution- (Rural KTA Network) 

Figure 6.10: Continuous Variables Distribution- (Rural KTA Network) 
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Figure 6.11: Final Network Structure-Rural KTA Network 

Figure 6.12: Sensitivity of Continuous Variables – (Rural KTA Network) 
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Figure 6.13: Categorical Variables Distribution- (Urban Freeways Network) 
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Figure 6.14: Continuous Variables Distribution- (Urban Freeways Network) 
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Figure 6.15: Final Network Structure-Urban Freeways Network 
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Figure 6.16: Sensitivity of Continuous Variables – (Urban Freeways Network)  
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Figure 6.17: Categorical Variables Distribution- (Urban Expressways Network) 
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Figure 6.18:Continuous Variables Distribution- (Urban Expressways Network) 
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Figure 6.19: Final Network Structure-Urban Expressways Network 
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Figure 6.20: Sensitivity of Continuous Variables – (Urban Expressways Network) 
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CHAPTER 7 - SEAT BELT USE, DRIVE AGE, VEHICLE TYPES 

AND CRASH RATES 

7.1  Introduction 

In earlier chapters we have developed crash rate prediction models for different 

road networks. This chapter focuses on seat belt use, driver age, vehicle types and 

crash rates. The results presented in this chapter would give preliminary information on 

the statistics for Kansas road Networks. 

7.2  Literature Review-Seat Belts 

Seat belts are one of the most effective protective devices available to vehicle 

occupants. The National Highway Traffic Safety Administration (NHTSA) estimates that 

over the past 26 years, 135,000 fatalities and 3.8 million injuries in the U.S. have been 

prevented by seat belts. They also estimate that an additional 315,000 fatalities and 5.2 

million injuries would have been prevented during this timeframe if all vehicle occupants 

had used seat belts. In 2001 alone, 13,274 lives were saved in crashes through the use 

of seat belts, and an estimated 7,334 lives could have been saved during the same time 

period, had all occupants used seat belts (NHTSA, 2003). As laws mandating their use 

have become more prevalent, seat belt usage has risen. However, according to figures 

complied by the NHTSA, of the 31,910 vehicle occupants killed in vehicle crashes in the 

United States in 2001, 60% were not wearing seat belts (NHTSA, 2003). All the above 

statistics suggest that the effectiveness of seat belts as a safety device is 

unquestionable.  
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7.2.1  Seat Belts-National Overview 

Using seat belts is one of the most effective strategies available to the driving 

public for avoiding deaths and injuries in a crash (Dinh-Zarr et al., 2001). It is a federal 

law that all cars are equipped with seat belts. Even today, approximately one-quarter of 

U.S. drivers and front-seat passengers are still observed not to be buckled up 

(Glassbrenner, 2002). Nonusers tend to be involved in more crashes than belt users 

(Reinfurt et al., 1996), and belt use is lower (about 40 percent) for drivers involved in 

severe crashes (O’Neill, 2001). Moreover, at observed national belt use rates of 75 

percent, the United States continues to lag far behind the 90 to 95 percent belt use 

rates achieved in Canada, Australia, and several northern European countries  

7.2.2  Seat Belt Laws 

To encourage seat belt use, all states except New Hampshire have seat belt 

laws, although laws vary from state to state (NHTSA, 2001a). Each state law falls into 

one of two categories: primary or secondary. States with primary enforcement laws 

allow officers to stop a vehicle for an observed belt violation. In states with secondary 

enforcement laws, an initial stop must be made for another violation before a belt 

citation can be issued (Ulmer et al., 1995). Several studies have noted the difference in 

seat belt use in primary states compared to secondary states. According to a 2002 

National Occupant Protection Use Survey (NOPUS) study, the average seat belt usage 

rate for states with primary laws is 80% and the average rate for states with secondary 

laws is 69% (NHTSA, 2002). NOPUS is a Probability-based observational survey of belt 

use by drivers and front-seat occupants of passenger vehicles. This study has been 

conducted annually since 1994 and provides nationally representative data on observed 
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belt use in passenger vehicles and some demographic detail, such as belt use by race, 

ethnicity, and gender (Glassbrenner 2002,) 

Wells et al. (2001) studied seat belt use in four cities (two in states with primary 

laws and two in states with secondary laws) and found that the rates were higher in 

states with primary laws. Other studies have noted the change in belt use when a 

primary law replaces a secondary law. In January 1993, the state of California made the 

shift from secondary to primary enforcement. Studies conducted (Ulmer, Preusser, and 

Cosgrove (1995)) examined the impact of this change on seat belt usage in six 

communities. The percentage of drivers observed using seat belts increased from 58% 

before the change in the law to 76% following the change. In addition, drivers who were 

surveyed and had knowledge of the law said they were more likely to use seat belts 

than they were in the past. When Maryland, Oklahoma, and the District of Columbia 

changed their laws from secondary to primary, the increases in seat belt rates ranged 

from 9% to 14% (NHTSA, 2001a). Initial improvements, however, are not typically 

sustain. The rates drop after the initial surge but remain higher than the rates prior to 

the enactment of primary enforcement legislation (Ulmer et al. 1995, Eby and Vivoda 

2001).  

7.2.2  Characteristics Associated with Belt Use 

Certain driver characteristics such as gender, age, education, and income have 

been linked to low seat belt use. Many studies have determined that females wear seat 

belts more often than males (NHTSA 2000, FDOT 2001, NHTSA 2003). Females have 

higher rates across all age groups, all vehicle types, all ethnic/racial groups, and in both 

primary and secondary states (Nelson et al., 1998, Ulmer et al., 1995, Eby and Vivoda 
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2001, Wells et al., 2002). Seat belt use has also been shown to increase with age, 

education, and income. Several studies have noted that older drivers tend to be more 

likely to wear their seat belts (NHTSA 2000, Ulmer et al., 1995, Williams et al., 1996, 

FDOT 2001). Seat belt usage is also affected by the type of vehicle. Usage rates in 

passenger cars, minivans, and SUVs are typically higher than use rates in pickup 

trucks. The 2002 NOPUS study (NHTSA, 2002) showed a 77% seat belt usage rate for 

passenger cars, 78% for vans and sport utility vehicles (SUVs), and 64% for pickup 

trucks. The 1998 Motor Vehicle Occupant Safety Survey (MVOSS)* (NHTSA, 2000) 

reported rates between 80–83% for cars, van/minivans, and SUVs, but 65% for pickup 

trucks (FDOT 2001, Ulmer et al. 1995, Eby and Vivoda 2001, Williams et al. 1996). 

Studies have also shown that seat belt rates tend to be slightly higher in urban areas 

than rural areas. About 80% of people in urban areas reported “all the time” use while 

about 77% in rural areas reported “all the time” use (NHTSA, 2000). According to the 

1998 NOPUS study, as cited by the 1998 MVOSS (NHTSA, 2000), 74.5% drivers in 

urban areas were observed with belts compared with 67% in rural areas. A study by the 

Florida Department of Transportation (FDOT) (2001) determined that the rates in 

Florida were higher in urban counties than rural counties and slightly higher on urban 

roadways than rural roadways (Williams et al. 1996). 

7.2.4  Reasons for Non-Use  

If seat belts are so effective, why don’t more motorists buckle up? Unlike air bags 

or automatic restraint systems, manual belts require action on the part of drivers and 

passengers. Reasons for not using belts stem from a complex mix of situational, 

habitual, and attitudinal factors. Many drivers and vehicle occupants report that they 
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would like to be wearing a seat belt in a crash but have not acquired the habit of 

buckling up on all trips. For this group (referred to hereafter as “part-time users”), belt 

use is situational; they tend to buckle up when the weather is poor or when they are 

taking longer trips on high-speed roads where they perceive driving as riskier. In 

surveys, these users report that the primary reasons for their not buckling up are driving 

short distances, forgetting, being in a hurry, or discomfort from the belt (Block 2001, v). 

In contrast, the much smaller group of motorists who never or rarely use their belts—the 

so-called “hard-core nonusers”—report negative attitudes toward seat belts as the 

primary reason for nonuse. These include discomfort, unfounded claims that belts are 

dangerous in a crash (e.g., could trap the driver in the vehicle), infringement of personal 

freedom and resentment of authority, and the attitude that they “just don’t feel like 

wearing them” (Block 2001, v). According to NHTSA’s most recent telephone survey on 

occupant restraint issues (Block 2001, 12), one-fifth of drivers can be characterized as 

part-time users, that is, they report using their belts most or some of the time, and about 

4 percent as hard-core nonusers, those who report never or rarely using their belts. The 

latter group is small but has a high crash risk. Unbelted drivers have significantly more 

traffic violations, higher crash involvement rates, higher arrest rates, and higher alcohol 

consumption than those who buckle up all or part of the time (Reinfurt et al. 1996).  

7.3  Driver Age-Literature Review 

Driver age is a very important factor in crashes. Driver age mainly accounts for 

perceptual and cognitive skills and deficiencies of these general skills contribute to 

higher crash rates.  
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7.3.1  Young Drivers  

Young drivers ages 16 to 24 constitute a high-risk driver group. According 

NHTSA, drivers under the age of 21 are approximately 2.5 times more likely to be killed 

in a crash than drivers ages 25 to 69. In 2004, 5,610 teenagers (16-19) died in the 

United States from crash injuries. The crash risk for young drivers is particularly high 

during the first years in which they are eligible for driver's licenses. They have very high 

rates of both fatal and nonfatal crashes compared with older drivers. This is true 

whether rates are based on the total number of young drivers, the number with licenses, 

or miles driven.  

Young drivers have characteristics and capabilities that differ from those of 

mature drivers in several areas like cognition, motivation, attitudes, perception and 

control of risk, and visual search and attention. 

Young drivers have been shown to be deficient in braking, steering and speed 

adjustment skills (Mayhew & Simpson, 1995). This is reflected in their performance on 

the road - they have difficulty maintaining proper lane position, in accelerating and 

decelerating smoothly, and in adjusting their speed to changing conditions and 

circumstances. Young drivers' skill deficiencies are also reflected in the quality of use of 

vehicle controls, including the amplitude, duration, velocity and acceleration of control 

movements (FORS, 1997). 

Young drivers also have perceptual deficiencies relating to searching and 

scanning the environment and detecting hazards. Novice drivers take longer to perceive 

and respond to hazards, and they tend to misread the risks associated with specific 

situations (Mayhew & Simpson, 1995). Although young and novice drivers gain car 
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control skills very quickly, within 20 hours of driving experience, the perception of risk or 

hazardous situations is acquired much more slowly (Mills, 1998). 

7.3.2  Older Drivers 

Older drivers are the most rapidly growing segment of the population in US. The 

safety problem of older drivers depends on how their performance is viewed 

(Transportation Research Board, 1988; Waller, 1991). Based upon numbers of licensed 

drivers, older drivers actually have fewer crashes and violations. 

As such, based on driver records alone, older drivers appear to be safer than 

other age groups. However, when crash rates based on mileage driven are calculated, 

drivers above 75 years of age have the highest rates of any age group, including 

teenage drivers. Overall, older drivers have fewer numbers of crashes overall than 

younger drivers, but have more crashes per mile driven.  

It is also the case that older drivers and older people in general, are more 

vulnerable to serious or fatal injury in a crash of specified dimensions (Evans, 1991). 

This increased vulnerability to injury begins around age 55 and increases with age 

(Evans, 1993; Evans, Garish, & Teheri, 1998; Partyka, 1983; Pike, 1989). Thus, even in 

relatively minor crashes, an older person is more susceptible to serious injury.  

Older drivers are also more likely to suffer from medical disabilities that may 

impair their driving and they may use medications that could affect their driving 

performance (Leveille, et al., 1994; Neutel, 1995). Even in the absence of clear 

evidence of medical impairment due to the use of medications, with increasing age most 

older drivers experience some loss in visual perception ability (e.g., Bailey & Sheedy, 

1988; Owsley & Sloane, 1990; Schieber, 1994a), decreases in cognitive functioning 
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(e.g., Cerella, 1985; Denney & Palmer, 1981), and decreased psychomotor function 

(e.g., Kausler, 1991; Marottoli & Drickamer, 1993; Yee, 1985). Simply put, age takes its 

toll. 

Older drivers, as a group, are aware of declining abilities, and take compensatory 

measures (Yee, 1985). They limit their driving to the safest times and places, they 

reduce their speed, and they may drive with a copilot (e.g., Eby & Kostyniuk, in press; 

Kostyniuk, Streff, & Eby, 1997; Persson, 1993). Older drivers are not characterized by 

risk-taking behaviors, such as speeding or reckless driving. Rather, their errors reflect 

impairment of perception and cognition. Yet, even though older drivers try to limit 

themselves to the safest times and places, their crash rate per mile driven rises 

dramatically with increasing age.  

7.4  Current Study 

In this study driver ages and vehicle types have been divided into groups. The 

driver ages have been separated into five groups: 14-17, 18-20, 21-34, 35-69 and 70 & 

greater. The vehicles have been divided into eight groups: Passenger Car (PC), Pick Up 

(PU), Sport utility Vehicles (UT), Minivans (VAN), Tractor Trailer (TT), Trucks (TRK), 

Bus (BUS) and Unknown Vehicles (UNKW).  

The driver age involvement in crashes, vehicle types and crashes, seat belt use 

within each vehicle type, are plotted for each crash rate type and network. The ages of 

drivers involved in crashes are plotted as a continuous function of age and also by age 

group. While plotting the involvement by age group, the plots have been normalized. 

Normalizing the data within age groups would show the true picture and would account 

for the different numbers of drivers in each age group.  
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Since data aggregation has been used the plots would give a preliminary idea of 

the data for Kansas road networks.  

7.5  Seat Belt Compliance Index 

Seat Belt usage, by drivers, for each crash type would not give the overall picture 

for the network as a whole. To give the overall compliance within each network an index 

has been developed using the methodology followed for Investment Index discussed in 

Chapter 4. The weight factors for each crash rate type are same as the ones used 

earlier for Investment Index calculation. The Combined Seat Belt Compliance Index 

(CSBCI) is given in Equation 7.1.  

[(TSBCI) (2 * ISBCI) (5 * SISBCI) (10 * FSBCI)])CSBCI 100 *
18

+ + +⎡ ⎤= ⎢ ⎥⎣ ⎦  Equation 7.1 

Where 

CSBCI  Combined Seat Belt Compliance Index

TSBCI  Total Crash Rate Seat Belt Compliance Index, 

ISBCI  Injury Crash Rate Seat Belt Compliance Index

SISBCI  Severe Injury Crash Rate Seat Belt Complian

=

=

=

= ce Index, 

FSBCI  Fatal Crash Rate Seat Belt Compliance Index=

 

Based on the CSBCI values the seat belt compliance ranking for vehicle types is 

evaluated. 
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7.6  Discussion of Results 

The plots for driver age, seat belt use and vehicle types for each network are 

shown in Figures 7.-7.. The results are discussed below for each network. 

1. Rural Expressways 

a. Driver Age: If we look at the continuous age distribution for the TCR 

(Figure 7.a), the highest values are observed only for (18-20) age group. The 

crash involvement decreases as the age increases. For ICR/SICR/FCR 

(Figures 7.a, 7.3a, and 7.a) the behavior is slightly different. This behavior is due 

to limited number of datasets. In order to get the exact picture, the driver age 

groups are normalized and plotted. For all crash rate types the driver age group 

(18-20) has the maximum involvement in crashes (Figures 7.b, 7.b, 7.3b and 

7.b). This behavior is in conformance with the literature review. In case of ICR 

even the (14-17) age group has crash involvement equal to the (18-20) age 

group. Other age groups do not have a high crash involvement.  

b. Vehicle Type: Passenger Cars have the highest crash involvement for all 

crash rate types. (Figures 7.c,7.c, 7.3c and 7.c) 

c. Seat belt use and Vehicle Type: There is consistent pattern for seat belt 

compliance. (Figures 7.d,7.d, 7.3d and 7.d) In general buses and trucks have 

very high compliance. The overall rankings based on CSBCI values for Rural 

Expressway network is as follows: BUS-100%∗,TRK-98%,VAN-83%,UNKW-

82%,PU-71%,UT-69%,TT-67%, PC-60%. 

                                            

∗ The number indicates percentage of drivers wearing seat belts within each vehicle class 



 

 
 

123

 

2. Rural 2 Lane 

a. Driver Age: If we look at the continuous age distributions, all the crash 

rate types have similar patterns. This network is the largest network and there 

are a large number of datasets. The distribution pattern for TCR and ICR 

(Figures 7.a and 7.a) are exactly similar. The distributions for SICR and FCR 

((Figures 7.a and 7.a) Figures 7.a and 7.a) have slightly different trends. There 

are small variations but if we look overall they also show a decreasing trend with 

increase in age. The plots for normalized age groups show that (18-20) age 

group has highest crash involvement. (Figures 7.b,7.b,7.b and 7.b)  

b. Vehicle Type: Passenger Cars have the highest crash involvement for all 

crash rate types. (Figures 7.5c,7.6c,7.7c,7.8c) 

c. Seat belt use and Vehicle Type: The seat belt compliance results are 

shown in (Figures 7.d,7.d,7.d,7.d) The overall rankings based on CSBCI values 

for Rural 2 Lane Network is as follows: BUS-99%,TT-78%,VAN-68%,TRK-

66%,PC-63%,UNKW-62%,UT-61%,PU-55%. 

For all the other networks also the patterns are exactly similar. In all networks 

the (18-20) age groups have highest crash involvement. Among vehicle types 

Passenger cars have highest involvement. The seat belt compliance changes 

slightly for each network.  

The rankings for each of the remaining networks are given below: 

3. Rural KTA: BUS-100%,TT-99%,UT-98%,PC-97%,VAN-97%,TRK-96%,PU-

89%,UNKW-68%. 
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4. RuralFreeways:BUS-100%,TT-86%,VAN-82%,TRK-78%,UT-72%,PC-65%,PU-

45%,UNKW-33% 

5. UrbanExpressways:BUS-100%,UNKW-100%,TRK-97%,VAN-90%,UT-85%,PC-

74%,TT-71%,PU-52% 

6. Urban Freeways: BUS-100%,UNKW-100%,TT-96%,PU-85%,PC-67%,TRK-

63%,UT-36%,VAN-35% 

7.7  Conclusions 

The general conclusions on driver age, vehicle type and seat belt compliance are 

as follows: 

1. Driver Age Group (18-20) has the highest number of crashes on all networks. 

2. Passenger cars have the highest crash involvement among vehicle types. 

3. Seat belt compliance is not completely consistent among all networks. Buses 

have the highest compliance among all networks. 
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Figure 7.1: Driver Age, Seat Belt Use and Vehicle Type-Rural Expressways (TCR) 
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Figure 7.2: Driver Age, Seat Belt Use and Vehicle Type-Rural Expressways (ICR) 
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Figure 7.3: Driver Age, Seat Belt Use and Vehicle Type-Rural Expressways (SICR)  
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Figure 7.4: Driver Age, Seat Belt Use and Vehicle Type-Rural Expressways (FCR) 

Figure 7.5: Driver Age, Seat Belt Use and Vehicle Type-Rural 2 Lane (TCR) 
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Figure 7.6: Driver Age, Seat Belt Use and Vehicle Type-Rural 2 Lane (ICR) 

Figure 7.7: Driver Age, Seat Belt Use and Vehicle Type-Rural 2 Lane (SICR) 
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Figure 7.8: Driver Age, Seat Belt Use and Vehicle Type-Rural 2 Lane (FCR) 

Figure 7.9: Driver Age, Seat Belt Use and Vehicle Type-Rural KTA (TCR) 



 

 
 

131

 
Figure 7.10: Driver Age, Seat Belt Use and Vehicle Type-Rural KTA (ICR) 

Figure 7.11: Driver Age, Seat Belt Use and Vehicle Type-Rural KTA (SICR) 
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Figure 7.12: Driver Age, Seat Belt Use and Vehicle Type-Rural KTA (FCR) 

Figure 7.13: Driver Age, Seat Belt Use and Vehicle Type-Rural Freeways (TCR) 
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Figure 7.14: Driver Age, Seat Belt Use and Vehicle Type-Rural Freeways (ICR) 

Figure 7.15: Driver Age, Seat Belt Use and Vehicle Type-Rural Freeways (SICR) 
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Figure 7.16: Driver Age, Seat Belt Use and Vehicle Type-Rural Freeways (FCR) 

Figure 7.17: Driver Age, Seat Belt Use and Vehicle Type-Urban Expressways (TCR) 
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Figure 7.18: Driver Age, Seat Belt Use and Vehicle Type-Urban Expressways(ICR) 

Figure 7.19: Driver Age, Seat Belt Use and Vehicle Type-Urban Expressways(SICR) 
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Figure 7.20: Driver Age, Seat Belt Use and Vehicle Type-Urban Expressways(FCR) 

Figure 7.21: Driver Age, Seat Belt Use and Vehicle Type-Urban Freeways(TCR) 



 

 
 

137

 

 

 

Figure 7.22: Driver Age, Seat Belt Use and Vehicle Type-Urban Freeways(ICR) 

Figure 7.23: Driver Age, Seat Belt Use and Vehicle Type-Urban Freeways(SICR) 
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Figure 7.24:Driver Age, Seat Belt Use and Vehicle Type-Urban Freeways(FCR) 
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CHAPTER 8 - CONCLUSIONS 

8.1  Introduction 

Over the years modeling techniques shifted from conventional regression to 

stochastic regression and artificial intelligence network models. Reliable data is being 

available for modeling and the objective of modeling crashes was transferred from 

providing criteria and assessment for highway construction and maintenance to 

supporting advanced traffic management systems. Earlier research emphasized the 

relationships between highway geometric variables and crashes, while current research 

focuses more on exploring the relationships between traffic variables and crashes under 

a certain geometric characteristics.  

8.2  Overall Conclusions 

The following conclusions can be deduced based for Kansas Road networks: 

• Crash rate trends are an effective tool to measure safety hazards on highways as 

they combine crash frequency with vehicle exposure. 

• Rural 2 Lane Network and Urban Expressways network have the highest crash 

rates in rural and urban categories respectively. 

• The average crash rate trends (all networks combined) show that TCR increased 

up to 1997 and then remained constant. ICR/SICR/FCR do not have any common 

trends.  

• Crash rates and trends give a preliminary picture of the problems associated with 

each road network. Based on crash rate trend, high crash locations can be identified. If 

the expected values are much higher than the anticipated values, then proper 

countermeasures can be taken to improve safety. 
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• The crash models developed for each network would give engineers and 

planners a preliminary idea of the variables to control/alter in case of problematic 

situations and in future planning operations. 

• The neural network models developed for crash rates need to be updated on a 

regular basis as the traffic conditions keep changing. The model updating process 

would not be as cumbersome as the development phase. Also if new variables need to 

be incorporated it can be done easily. This convenience is usually not available with 

conventional regression and statistical models. 

• This study has shown the potential of Artificial Neural Network modeling. Further 

studies should be conducted on different crash databases in other states to and support 

the findings of this research. 

• Driver Age Group (18-20) has the involvement in crashes on all road networks. 

Some of the recommendations to reduce the crash risk of teen drivers included driver 

improvement programs, driver education and training, special licensing programs for 

teens (provisional and graduated licensing), BAC limits, and curfew laws.  

• Passenger cars have the highest crash involvement among vehicle types. 

• Among all vehicle types, buses have the highest seat belt compliance for all 

networks. The State of Kansas should change its seat belt law from secondary to 

primary enforcement. This would enable all drivers to wear seat belts which in turn 

would reduce crash risk. 

8.4  Future Research 

One of the major objectives of crash modeling research is to support the traffic 

management including regular and real time management. Accurate and reliable 
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relationships between the occurrence of crashes and highway geometric and traffic 

conditions under a certain environment could present useful insight to the potential 

corresponding safety and traffic operation performance. Therefore, more research 

should be performed to incorporate the models into traffic management systems.
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